Logo
0.22.8

Fundamental components

  • Graphs manipulation
    • Edges and Arcs
      • Arc
      • Edge
    • Directed Graphs
      • Digraph
      • Directed Acyclic Graph
    • Undirected Graphs
      • UndiGraph
      • Clique Graph
    • Mixed Graph
  • Random Variables
    • Common API for Random Discrete Variables
    • Concrete classes for Random Discrete Variables
      • LabelizedVariable
      • DiscretizedVariable
      • IntegerVariable
      • RangeVariable
  • Potential and Instantiation
    • Instantiation
    • Potential

Graphical Models

  • Bayesian network
    • Model
    • Tools for Bayesian networks
      • Generation of database
      • Comparison of Bayesian networks
      • Explanation and analysis
      • Fragment of Bayesian networks
    • Inference
    • Exact Inference
      • Lazy Propagation
      • Shafer Shenoy Inference
      • Variable Elimination
    • Approximated Inference
      • Loopy Belief Propagation
      • Sampling
        • Gibbs Sampling
        • Monte Carlo Sampling
        • Weighted Sampling
        • Importance Sampling
      • Loopy sampling
        • Loopy Gibbs Sampling
        • Loopy Monte Carlo Sampling
        • Loopy Weighted Sampling
        • Loopy Importance Sampling
    • Learning
  • Influence Diagram
    • Model
    • Inference
  • Credal Network
    • Model
    • Inference
  • Markov Network
    • Model
    • Inference
      • Shafer Shenoy Inference
  • Probabilistic Relational Models

Causality

  • pyAgrum.causal documentation
    • Causal Model
    • Causal Formula
    • Causal Inference
    • Abstract Syntax Tree for Do-Calculus
    • Exceptions
    • Notebook’s tools for causality

scikit-learn-like BN Classifiers

  • pyAgrum.skbn documentation
    • Classifier using Bayesian networks
    • Discretizer for Bayesian networks

pyAgrum.lib modules

  • pyAgrum.lib.notebook
  • pyAgrum.lib.image
  • pyAgrum.lib.explain
  • pyAgrum.lib.dynamicBN
  • other pyAgrum.lib modules

Miscellaneous

  • Functions from pyAgrum
    • Useful functions in pyAgrum
    • Quick specification of (randomly parameterized) graphical models
    • Input/Output for Bayesian networks
    • Input/Output for Markov networks
    • Input for influence diagram
  • Other functions from aGrUM
    • Listeners
      • LoadListener
      • StructuralListener
      • ApproximationSchemeListener
      • DatabaseGenerationListener
    • Random functions
    • OMP functions
  • Exceptions from aGrUM

Customizing pyAgrum

  • Configuration for pyAgrum
pyAgrum
  • Docs »
  • Search
  • Edit on GitLab


© Copyright 2018-21, aGrUM/pyAgrum Team Revision 90b9a807.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: 0.22.8
Versions
latest
0.22.8
0.22.7
0.22.5
0.22.4
0.22.3
0.22.2
0.22.0
0.21.0
0.20.3
0.20.2
0.20.1
0.19.3
0.19.2
0.19.1
0.19.0
0.18.2
0.18.1
0.18.0
0.17.3
0.17.2
0.17.1
0.17.0
0.16.4
0.16.3
0.16.2
0.16.1
0.15.0
0.14.3
0.13.6
Downloads
pdf
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.