Inference
Inference is the process that consists in computing new probabilistc information from a Bayesian network and some evidence. aGrUM/pyAgrum mainly focus on the computation of (joint) posterior for some variables of the Bayesian networks given soft or hard evidence that are the form of likelihoods on some variables. Inference is a hard task (NP-complete). aGrUM/pyAgrum implements exact inference but also approximated inference that can converge slowly and (even) not exactly but thant can in many cases be useful for applications.
Exact Inference
Lazy Propagation
Lazy Propagation is the main exact inference for classical Bayesian networks in aGrUM/pyAgrum.
- class pyAgrum.LazyPropagation(*args)
Class used for Lazy Propagation
- LazyPropagation(bn) -> LazyPropagation
- Parameters:
bn (pyAgrum.BayesNet) – a Bayesian network
- BN()
- Returns:
A constant reference over the IBayesNet referenced by this class.
- Return type:
pyAgrum.IBayesNet
- Raises:
pyAgrum.UndefinedElement – If no Bayes net has been assigned to the inference.
- H(X)
Deprecated I in LazyPropagation/ShaferShenoyMRFInference
- I(X, Y)
Deprecated I in LazyPropagation/ShaferShenoyMRFInference
- VI(X, Y)
Deprecated VI in LazyPropagation/ShaferShenoyMRFInference
- addAllTargets()
Add all the nodes as targets.
- Return type:
None
- addEvidence(*args)
Adds a new evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val – (int) a node value
val – (str) the label of the node value
vals (list) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node already has an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- addJointTarget(targets)
Add a list of nodes as a new joint target. As a collateral effect, every node is added as a marginal target.
- Parameters:
list – a list of names of nodes
targets (
object
)
- Raises:
pyAgrum.UndefinedElement – If some node(s) do not belong to the Bayesian network
- Return type:
None
- addTarget(*args)
Add a marginal target to the list of targets.
- Parameters:
target (int) – a node Id
nodeName (str) – a node name
- Raises:
pyAgrum.UndefinedElement – If target is not a NodeId in the Bayes net
- Return type:
None
- chgEvidence(*args)
Change the value of an already existing evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val (intstr) – a node value or the label of the node value
vals (List[float]) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node does not already have an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- eraseAllEvidence()
Removes all the evidence entered into the network.
- Return type:
None
- eraseAllJointTargets()
Clear all previously defined joint targets.
- Return type:
None
- eraseAllMarginalTargets()
Clear all the previously defined marginal targets.
- Return type:
None
- eraseAllTargets()
Clear all previously defined targets (marginal and joint targets).
As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).
- Return type:
None
- eraseEvidence(*args)
Remove the evidence, if any, corresponding to the node Id or name.
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- Return type:
None
- eraseJointTarget(targets)
Remove, if existing, the joint target.
- Parameters:
list – a list of names or Ids of nodes
targets (
object
)
- Raises:
pyAgrum.IndexError – If one of the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- Return type:
None
- eraseTarget(*args)
Remove, if existing, the marginal target.
- Parameters:
target (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If one of the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- Return type:
None
- evidenceImpact(target, evs)
Create a pyAgrum.Potential for P(target|evs) (for all instanciation of target and evs)
- Parameters:
target (set) – a set of targets ids or names.
evs (set) – a set of nodes ids or names.
Warning
if some evs are d-separated, they are not included in the Potential.
- Returns:
a Potential for P(targets|evs)
- Return type:
- evidenceJointImpact(*args)
Create a pyAgrum.Potential for P(joint targets|evs) (for all instanciation of targets and evs)
- Parameters:
targets (List[intstr]) – a list of node Ids or node names
evs (Set[intstr]) – a set of nodes ids or names.
- Returns:
a Potential for P(target|evs)
- Return type:
- Raises:
pyAgrum.Exception – If some evidene entered into the Bayes net are incompatible (their joint proba = 0)
- evidenceProbability()
- Returns:
the probability of evidence
- Return type:
float
- getNumberOfThreads()
returns the number of threads used by LazyPropagation during inferences.
- Returns:
the number of threads used by LazyPropagation during inferences
- Return type:
int
- hardEvidenceNodes()
- Returns:
the set of nodes with hard evidence
- Return type:
set
- hasEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if some node(s) (or the one in parameters) have received evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasHardEvidence(nodeName)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a hard evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasSoftEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a soft evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- isGumNumberOfThreadsOverriden()
Indicates whether LazyPropagation currently overrides aGrUM’s default number of threads (see method setNumberOfThreads).
- Returns:
A Boolean indicating whether LazyPropagation currently overrides aGrUM’s default number of threads
- Return type:
bool
- isJointTarget(targets)
- Parameters:
list – a list of nodes ids or names.
targets (
object
)
- Returns:
True if target is a joint target.
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- isTarget(*args)
- Parameters:
variable (int) – a node Id
nodeName (str) – a node name
- Returns:
True if variable is a (marginal) target
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- joinTree()
- Returns:
the current join tree used
- Return type:
- jointMutualInformation(targets)
- Parameters:
targets (
object
)- Return type:
float
- jointPosterior(targets)
Compute the joint posterior of a set of nodes.
- Parameters:
list – the list of nodes whose posterior joint probability is wanted
Warning
The order of the variables given by the list here or when the jointTarget is declared can not be assumed to be used by the Potential.
- Returns:
a const ref to the posterior joint probability of the set of nodes.
- Return type:
- Raises:
pyAgrum.UndefinedElement – If an element of nodes is not in targets
- Parameters:
targets (
object
)
- jointTargets()
- Returns:
the list of target sets
- Return type:
list
- junctionTree()
- Returns:
the current junction tree
- Return type:
- makeInference()
Perform the heavy computations needed to compute the targets’ posteriors
In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.
- Return type:
None
- mpe()
Find the Most Probable Explanation (MPE) given the evidence (if any) added into LazyPropagation
- Returns:
An instantiation of all the variables of the Bayes net representing the Most Probable Explanation.
- Return type:
- mpeLog2Posterior()
Find the Most Probable Explanation (MPE) given the evidence (if any) added into LazyPropagation as well as the log2 of its posterior probability
- Returns:
A tuple with the instantiation of all the variables of the Bayes net representing the Most Probable Explanation and the log2 of its posterior probability
- Return type:
Tuple[pyAgrum.Instantiation, float]
- nbrEvidence()
- Returns:
the number of evidence entered into the Bayesian network
- Return type:
int
- nbrHardEvidence()
- Returns:
the number of hard evidence entered into the Bayesian network
- Return type:
int
- nbrJointTargets()
- Returns:
the number of joint targets
- Return type:
int
- nbrSoftEvidence()
- Returns:
the number of soft evidence entered into the Bayesian network
- Return type:
int
- nbrTargets()
- Returns:
the number of marginal targets
- Return type:
int
- posterior(*args)
Computes and returns the posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the posterior probability of the node
- Return type:
- Raises:
pyAgrum.UndefinedElement – If an element of nodes is not in targets
- setEvidence(evidces)
Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node pyAgrum.InvalidArgument If the size of a value is different from the domain side of the node pyAgrum.FatalError If one value is a vector of 0s pyAgrum.UndefinedElement If one node does not belong to the Bayesian network
- setMaxMemory(gigabytes)
sets an upper bound on the memory consumption admissible
- Parameters:
gigabytes (float) – this upper bound in gigabytes.
- Return type:
None
- setNumberOfThreads(nb)
If the argument nb is different from 0, this number of threads will be used during inferences, hence overriding aGrUM’s default number of threads. If, on the contrary, nb is equal to 0, the parallelized inference engine will comply with aGrUM’s default number of threads.
- Parameters:
nb (int) – the number of threads to be used by ShaferShenoyMRFInference
- Return type:
None
- setTargets(targets)
Remove all the targets and add the ones in parameter.
- Parameters:
targets (set) – a set of targets
- Raises:
pyAgrum.UndefinedElement – If one target is not in the Bayes net
- softEvidenceNodes()
- Returns:
the set of nodes with soft evidence
- Return type:
set
- targets()
- Returns:
the list of marginal targets
- Return type:
list
- property thisown
The membership flag
- updateEvidence(evidces)
Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node
pyAgrum.InvalidArgument – If the size of a value is different from the domain side of the node
pyAgrum.FatalError – If one value is a vector of 0s
pyAgrum.UndefinedElement – If one node does not belong to the Bayesian network
Shafer-Shenoy Inference
- class pyAgrum.ShaferShenoyInference(*args)
Class used for Shafer-Shenoy inferences.
- ShaferShenoyInference(bn) -> ShaferShenoyInference
- Parameters:
bn (pyAgrum.BayesNet) – a Bayesian network
- BN()
- Returns:
A constant reference over the IBayesNet referenced by this class.
- Return type:
pyAgrum.IBayesNet
- Raises:
pyAgrum.UndefinedElement – If no Bayes net has been assigned to the inference.
- H(*args)
- Parameters:
X (int) – a node Id
nodeName (str) – a node name
- Returns:
the computed Shanon’s entropy of a node given the observation
- Return type:
float
- addAllTargets()
Add all the nodes as targets.
- Return type:
None
- addEvidence(*args)
Adds a new evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val – (int) a node value
val – (str) the label of the node value
vals (list) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node already has an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- addJointTarget(targets)
Add a list of nodes as a new joint target. As a collateral effect, every node is added as a marginal target.
- Parameters:
list – a list of names of nodes
targets (
object
)
- Raises:
pyAgrum.UndefinedElement – If some node(s) do not belong to the Bayesian network
- Return type:
None
- addTarget(*args)
Add a marginal target to the list of targets.
- Parameters:
target (int) – a node Id
nodeName (str) – a node name
- Raises:
pyAgrum.UndefinedElement – If target is not a NodeId in the Bayes net
- Return type:
None
- chgEvidence(*args)
Change the value of an already existing evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val (intstr) – a node value or the label of the node value
vals (List[float]) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node does not already have an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- eraseAllEvidence()
Removes all the evidence entered into the network.
- Return type:
None
- eraseAllJointTargets()
Clear all previously defined joint targets.
- Return type:
None
- eraseAllMarginalTargets()
Clear all the previously defined marginal targets.
- Return type:
None
- eraseAllTargets()
Clear all previously defined targets (marginal and joint targets).
As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).
- Return type:
None
- eraseEvidence(*args)
Remove the evidence, if any, corresponding to the node Id or name.
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- Return type:
None
- eraseJointTarget(targets)
Remove, if existing, the joint target.
- Parameters:
list – a list of names or Ids of nodes
targets (
object
)
- Raises:
pyAgrum.IndexError – If one of the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- Return type:
None
- eraseTarget(*args)
Remove, if existing, the marginal target.
- Parameters:
target (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If one of the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- Return type:
None
- evidenceImpact(target, evs)
Create a pyAgrum.Potential for P(target|evs) (for all instanciation of target and evs)
- Parameters:
target (set) – a set of targets ids or names.
evs (set) – a set of nodes ids or names.
Warning
if some evs are d-separated, they are not included in the Potential.
- Returns:
a Potential for P(targets|evs)
- Return type:
- evidenceJointImpact(*args)
Create a pyAgrum.Potential for P(joint targets|evs) (for all instanciation of targets and evs)
- Parameters:
targets (List[intstr]) – a list of node Ids or node names
evs (Set[intstr]) – a set of nodes ids or names.
- Returns:
a Potential for P(target|evs)
- Return type:
- Raises:
pyAgrum.Exception – If some evidene entered into the Bayes net are incompatible (their joint proba = 0)
- evidenceProbability()
- Returns:
the probability of evidence
- Return type:
float
- getNumberOfThreads()
returns the number of threads used by LazyPropagation during inferences.
- Returns:
the number of threads used by LazyPropagation during inferences
- Return type:
int
- hardEvidenceNodes()
- Returns:
the set of nodes with hard evidence
- Return type:
set
- hasEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if some node(s) (or the one in parameters) have received evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasHardEvidence(nodeName)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a hard evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasSoftEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a soft evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- isGumNumberOfThreadsOverriden()
Indicates whether LazyPropagation currently overrides aGrUM’s default number of threads (see method setNumberOfThreads).
- Returns:
A Boolean indicating whether LazyPropagation currently overrides aGrUM’s default number of threads
- Return type:
bool
- isJointTarget(targets)
- Parameters:
list – a list of nodes ids or names.
targets (
object
)
- Returns:
True if target is a joint target.
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- isTarget(*args)
- Parameters:
variable (int) – a node Id
nodeName (str) – a node name
- Returns:
True if variable is a (marginal) target
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- joinTree()
- Returns:
the current join tree used
- Return type:
- jointMutualInformation(targets)
- Parameters:
targets (
object
)- Return type:
float
- jointPosterior(targets)
Compute the joint posterior of a set of nodes.
- Parameters:
list – the list of nodes whose posterior joint probability is wanted
Warning
The order of the variables given by the list here or when the jointTarget is declared can not be assumed to be used by the Potential.
- Returns:
a const ref to the posterior joint probability of the set of nodes.
- Return type:
- Raises:
pyAgrum.UndefinedElement – If an element of nodes is not in targets
- Parameters:
targets (
object
)
- jointTargets()
- Returns:
the list of target sets
- Return type:
list
- junctionTree()
- Returns:
the current junction tree
- Return type:
- makeInference()
Perform the heavy computations needed to compute the targets’ posteriors
In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.
- Return type:
None
- nbrEvidence()
- Returns:
the number of evidence entered into the Bayesian network
- Return type:
int
- nbrHardEvidence()
- Returns:
the number of hard evidence entered into the Bayesian network
- Return type:
int
- nbrJointTargets()
- Returns:
the number of joint targets
- Return type:
int
- nbrSoftEvidence()
- Returns:
the number of soft evidence entered into the Bayesian network
- Return type:
int
- nbrTargets()
- Returns:
the number of marginal targets
- Return type:
int
- posterior(*args)
Computes and returns the posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the posterior probability of the node
- Return type:
- Raises:
pyAgrum.UndefinedElement – If an element of nodes is not in targets
- setEvidence(evidces)
Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node pyAgrum.InvalidArgument If the size of a value is different from the domain side of the node pyAgrum.FatalError If one value is a vector of 0s pyAgrum.UndefinedElement If one node does not belong to the Bayesian network
- setMaxMemory(gigabytes)
sets an upper bound on the memory consumption admissible
- Parameters:
gigabytes (float) – this upper bound in gigabytes.
- Return type:
None
- setNumberOfThreads(nb)
If the argument nb is different from 0, this number of threads will be used during inferences, hence overriding aGrUM’s default number of threads. If, on the contrary, nb is equal to 0, the parallelized inference engine will comply with aGrUM’s default number of threads.
- Parameters:
nb (int) – the number of threads to be used by ShaferShenoyMRFInference
- Return type:
None
- setTargets(targets)
Remove all the targets and add the ones in parameter.
- Parameters:
targets (set) – a set of targets
- Raises:
pyAgrum.UndefinedElement – If one target is not in the Bayes net
- softEvidenceNodes()
- Returns:
the set of nodes with soft evidence
- Return type:
set
- targets()
- Returns:
the list of marginal targets
- Return type:
list
- property thisown
The membership flag
- updateEvidence(evidces)
Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node
pyAgrum.InvalidArgument – If the size of a value is different from the domain side of the node
pyAgrum.FatalError – If one value is a vector of 0s
pyAgrum.UndefinedElement – If one node does not belong to the Bayesian network
Variable Elimination
- class pyAgrum.VariableElimination(*args)
Class used for Variable Elimination inference algorithm.
Warning
Even if this inference has the same API than the other (exact) inferences, its mode of operation is different and is specifically dedicated to the calculation of a single posterior. Any other use (for instance for multiple targets) is possibly inefficient.
- VariableElimination(bn) -> VariableElimination
- Parameters:
bn (pyAgrum.BayesNet) – a Bayesian network
- BN()
- Returns:
A constant reference over the IBayesNet referenced by this class.
- Return type:
pyAgrum.IBayesNet
- Raises:
pyAgrum.UndefinedElement – If no Bayes net has been assigned to the inference.
- H(*args)
- Parameters:
X (int) – a node Id
nodeName (str) – a node name
- Returns:
the computed Shanon’s entropy of a node given the observation
- Return type:
float
- addAllTargets()
Add all the nodes as targets.
- Return type:
None
- addEvidence(*args)
Adds a new evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val – (int) a node value
val – (str) the label of the node value
vals (list) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node already has an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- addJointTarget(targets)
Add a list of nodes as a new joint target. As a collateral effect, every node is added as a marginal target.
- Parameters:
list – a list of names of nodes
targets (
object
)
- Raises:
pyAgrum.UndefinedElement – If some node(s) do not belong to the Bayesian network
- Return type:
None
- addTarget(*args)
Add a marginal target to the list of targets.
- Parameters:
target (int) – a node Id
nodeName (str) – a node name
- Raises:
pyAgrum.UndefinedElement – If target is not a NodeId in the Bayes net
- Return type:
None
- chgEvidence(*args)
Change the value of an already existing evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val (intstr) – a node value or the label of the node value
vals (List[float]) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node does not already have an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- eraseAllEvidence()
Removes all the evidence entered into the network.
- Return type:
None
- eraseAllTargets()
Clear all previously defined targets (marginal and joint targets).
As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).
- Return type:
None
- eraseEvidence(*args)
Remove the evidence, if any, corresponding to the node Id or name.
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- Return type:
None
- eraseJointTarget(targets)
Remove, if existing, the joint target.
- Parameters:
list – a list of names or Ids of nodes
targets (
object
)
- Raises:
pyAgrum.IndexError – If one of the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- Return type:
None
- eraseTarget(*args)
Remove, if existing, the marginal target.
- Parameters:
target (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If one of the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- Return type:
None
- evidenceImpact(target, evs)
Create a pyAgrum.Potential for P(target|evs) (for all instanciation of target and evs)
- Parameters:
target (set) – a set of targets ids or names.
evs (set) – a set of nodes ids or names.
Warning
if some evs are d-separated, they are not included in the Potential.
- Returns:
a Potential for P(targets|evs)
- Return type:
- evidenceJointImpact(targets, evs)
Create a pyAgrum.Potential for P(joint targets|evs) (for all instanciation of targets and evs)
- Parameters:
targets (List[intstr]) – a list of node Ids or node names
evs (Set[intstr]) – a set of nodes ids or names.
- Returns:
a Potential for P(target|evs)
- Return type:
- Raises:
pyAgrum.Exception – If some evidene entered into the Bayes net are incompatible (their joint proba = 0)
- getNumberOfThreads()
returns the number of threads used by LazyPropagation during inferences.
- Returns:
the number of threads used by LazyPropagation during inferences
- Return type:
int
- hardEvidenceNodes()
- Returns:
the set of nodes with hard evidence
- Return type:
set
- hasEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if some node(s) (or the one in parameters) have received evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasHardEvidence(nodeName)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a hard evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasSoftEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a soft evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- isGumNumberOfThreadsOverriden()
Indicates whether LazyPropagation currently overrides aGrUM’s default number of threads (see method setNumberOfThreads).
- Returns:
A Boolean indicating whether LazyPropagation currently overrides aGrUM’s default number of threads
- Return type:
bool
- isJointTarget(targets)
- Parameters:
list – a list of nodes ids or names.
targets (
object
)
- Returns:
True if target is a joint target.
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- isTarget(*args)
- Parameters:
variable (int) – a node Id
nodeName (str) – a node name
- Returns:
True if variable is a (marginal) target
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- jointMutualInformation(targets)
- Parameters:
targets (
object
)- Return type:
float
- jointPosterior(targets)
Compute the joint posterior of a set of nodes.
- Parameters:
list – the list of nodes whose posterior joint probability is wanted
Warning
The order of the variables given by the list here or when the jointTarget is declared can not be assumed to be used by the Potential.
- Returns:
a const ref to the posterior joint probability of the set of nodes.
- Return type:
- Raises:
pyAgrum.UndefinedElement – If an element of nodes is not in targets
- Parameters:
targets (
object
)
- jointTargets()
- Returns:
the list of target sets
- Return type:
list
- junctionTree(id)
- Returns:
the current junction tree
- Return type:
- makeInference()
Perform the heavy computations needed to compute the targets’ posteriors
In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.
- Return type:
None
- nbrEvidence()
- Returns:
the number of evidence entered into the Bayesian network
- Return type:
int
- nbrHardEvidence()
- Returns:
the number of hard evidence entered into the Bayesian network
- Return type:
int
- nbrSoftEvidence()
- Returns:
the number of soft evidence entered into the Bayesian network
- Return type:
int
- nbrTargets()
- Returns:
the number of marginal targets
- Return type:
int
- posterior(*args)
Computes and returns the posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the posterior probability of the node
- Return type:
- Raises:
pyAgrum.UndefinedElement – If an element of nodes is not in targets
- setEvidence(evidces)
Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node pyAgrum.InvalidArgument If the size of a value is different from the domain side of the node pyAgrum.FatalError If one value is a vector of 0s pyAgrum.UndefinedElement If one node does not belong to the Bayesian network
- setMaxMemory(gigabytes)
sets an upper bound on the memory consumption admissible
- Parameters:
gigabytes (float) – this upper bound in gigabytes.
- Return type:
None
- setNumberOfThreads(nb)
If the argument nb is different from 0, this number of threads will be used during inferences, hence overriding aGrUM’s default number of threads. If, on the contrary, nb is equal to 0, the parallelized inference engine will comply with aGrUM’s default number of threads.
- Parameters:
nb (int) – the number of threads to be used by ShaferShenoyMRFInference
- Return type:
None
- setTargets(targets)
Remove all the targets and add the ones in parameter.
- Parameters:
targets (set) – a set of targets
- Raises:
pyAgrum.UndefinedElement – If one target is not in the Bayes net
- softEvidenceNodes()
- Returns:
the set of nodes with soft evidence
- Return type:
set
- targets()
- Returns:
the list of marginal targets
- Return type:
list
- property thisown
The membership flag
- updateEvidence(evidces)
Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node
pyAgrum.InvalidArgument – If the size of a value is different from the domain side of the node
pyAgrum.FatalError – If one value is a vector of 0s
pyAgrum.UndefinedElement – If one node does not belong to the Bayesian network
Approximated Inference
Loopy Belief Propagation
- class pyAgrum.LoopyBeliefPropagation(bn)
Class used for inferences using loopy belief propagation algorithm.
- LoopyBeliefPropagation(bn) -> LoopyBeliefPropagation
- Parameters:
bn (pyAgrum.BayesNet) – a Bayesian network
- Parameters:
bn (
IBayesNet
)
- BN()
- Returns:
A constant reference over the IBayesNet referenced by this class.
- Return type:
pyAgrum.IBayesNet
- Raises:
pyAgrum.UndefinedElement – If no Bayes net has been assigned to the inference.
- H(*args)
- Parameters:
X (int) – a node Id
nodeName (str) – a node name
- Returns:
the computed Shanon’s entropy of a node given the observation
- Return type:
float
- addAllTargets()
Add all the nodes as targets.
- Return type:
None
- addEvidence(*args)
Adds a new evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val – (int) a node value
val – (str) the label of the node value
vals (list) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node already has an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- addTarget(*args)
Add a marginal target to the list of targets.
- Parameters:
target (int) – a node Id
nodeName (str) – a node name
- Raises:
pyAgrum.UndefinedElement – If target is not a NodeId in the Bayes net
- Return type:
None
- chgEvidence(*args)
Change the value of an already existing evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val (intstr) – a node value or the label of the node value
vals (List[float]) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node does not already have an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- currentTime()
- Returns:
get the current running time in second (float)
- Return type:
float
- epsilon()
- Returns:
the value of epsilon
- Return type:
float
- eraseAllEvidence()
Removes all the evidence entered into the network.
- Return type:
None
- eraseAllTargets()
Clear all previously defined targets (marginal and joint targets).
As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).
- Return type:
None
- eraseEvidence(*args)
Remove the evidence, if any, corresponding to the node Id or name.
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- Return type:
None
- eraseTarget(*args)
Remove, if existing, the marginal target.
- Parameters:
target (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If one of the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- Return type:
None
- evidenceImpact(target, evs)
Create a pyAgrum.Potential for P(target|evs) (for all instanciation of target and evs)
- Parameters:
target (set) – a set of targets ids or names.
evs (set) – a set of nodes ids or names.
Warning
if some evs are d-separated, they are not included in the Potential.
- Returns:
a Potential for P(targets|evs)
- Return type:
- hardEvidenceNodes()
- Returns:
the set of nodes with hard evidence
- Return type:
set
- hasEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if some node(s) (or the one in parameters) have received evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasHardEvidence(nodeName)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a hard evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasSoftEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a soft evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- history()
- Returns:
the scheme history
- Return type:
tuple
- Raises:
pyAgrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
- isTarget(*args)
- Parameters:
variable (int) – a node Id
nodeName (str) – a node name
- Returns:
True if variable is a (marginal) target
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- makeInference()
Perform the heavy computations needed to compute the targets’ posteriors
In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.
- Return type:
None
- maxIter()
- Returns:
the criterion on number of iterations
- Return type:
int
- maxTime()
- Returns:
the timeout(in seconds)
- Return type:
float
- messageApproximationScheme()
- Returns:
the approximation scheme message
- Return type:
str
- minEpsilonRate()
- Returns:
the value of the minimal epsilon rate
- Return type:
float
- nbrEvidence()
- Returns:
the number of evidence entered into the Bayesian network
- Return type:
int
- nbrHardEvidence()
- Returns:
the number of hard evidence entered into the Bayesian network
- Return type:
int
- nbrIterations()
- Returns:
the number of iterations
- Return type:
int
- nbrSoftEvidence()
- Returns:
the number of soft evidence entered into the Bayesian network
- Return type:
int
- nbrTargets()
- Returns:
the number of marginal targets
- Return type:
int
- periodSize()
- Returns:
the number of samples between 2 stopping
- Return type:
int
- Raises:
pyAgrum.OutOfBounds – If p<1
- posterior(*args)
Computes and returns the posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the posterior probability of the node
- Return type:
- Raises:
pyAgrum.UndefinedElement – If an element of nodes is not in targets
- setEpsilon(eps)
- Parameters:
eps (float) – the epsilon we want to use
- Raises:
pyAgrum.OutOfBounds – If eps<0
- Return type:
None
- setEvidence(evidces)
Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node pyAgrum.InvalidArgument If the size of a value is different from the domain side of the node pyAgrum.FatalError If one value is a vector of 0s pyAgrum.UndefinedElement If one node does not belong to the Bayesian network
- setMaxIter(max)
- Parameters:
max (int) – the maximum number of iteration
- Raises:
pyAgrum.OutOfBounds – If max <= 1
- Return type:
None
- setMaxTime(timeout)
- Parameters:
tiemout (float) – stopping criterion on timeout (in seconds)
timeout (
float
)
- Raises:
pyAgrum.OutOfBounds – If timeout<=0.0
- Return type:
None
- setMinEpsilonRate(rate)
- Parameters:
rate (float) – the minimal epsilon rate
- Return type:
None
- setPeriodSize(p)
- Parameters:
p (int) – number of samples between 2 stopping
- Raises:
pyAgrum.OutOfBounds – If p<1
- Return type:
None
- setTargets(targets)
Remove all the targets and add the ones in parameter.
- Parameters:
targets (set) – a set of targets
- Raises:
pyAgrum.UndefinedElement – If one target is not in the Bayes net
- setVerbosity(v)
- Parameters:
v (bool) – verbosity
- Return type:
None
- softEvidenceNodes()
- Returns:
the set of nodes with soft evidence
- Return type:
set
- targets()
- Returns:
the list of marginal targets
- Return type:
list
- property thisown
The membership flag
- updateEvidence(evidces)
Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node
pyAgrum.InvalidArgument – If the size of a value is different from the domain side of the node
pyAgrum.FatalError – If one value is a vector of 0s
pyAgrum.UndefinedElement – If one node does not belong to the Bayesian network
- verbosity()
- Returns:
True if the verbosity is enabled
- Return type:
bool
Sampling
Gibbs Sampling for BN
- class pyAgrum.GibbsSampling(bn)
Class for making Gibbs sampling inference in Bayesian networks.
- GibbsSampling(bn) -> GibbsSampling
- Parameters:
bn (pyAgrum.BayesNet) – a Bayesian network
- Parameters:
bn (
IBayesNet
)
- BN()
- Returns:
A constant reference over the IBayesNet referenced by this class.
- Return type:
pyAgrum.IBayesNet
- Raises:
pyAgrum.UndefinedElement – If no Bayes net has been assigned to the inference.
- H(*args)
- Parameters:
X (int) – a node Id
nodeName (str) – a node name
- Returns:
the computed Shanon’s entropy of a node given the observation
- Return type:
float
- addAllTargets()
Add all the nodes as targets.
- Return type:
None
- addEvidence(*args)
Adds a new evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val – (int) a node value
val – (str) the label of the node value
vals (list) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node already has an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- addTarget(*args)
Add a marginal target to the list of targets.
- Parameters:
target (int) – a node Id
nodeName (str) – a node name
- Raises:
pyAgrum.UndefinedElement – If target is not a NodeId in the Bayes net
- Return type:
None
- burnIn()
- Returns:
size of burn in on number of iteration
- Return type:
int
- chgEvidence(*args)
Change the value of an already existing evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val (intstr) – a node value or the label of the node value
vals (List[float]) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node does not already have an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- currentPosterior(*args)
Computes and returns the current posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the current posterior probability of the node
- Return type:
- Raises:
UndefinedElement – If an element of nodes is not in targets
- currentTime()
- Returns:
get the current running time in second (float)
- Return type:
float
- epsilon()
- Returns:
the value of epsilon
- Return type:
float
- eraseAllEvidence()
Removes all the evidence entered into the network.
- Return type:
None
- eraseAllTargets()
Clear all previously defined targets (marginal and joint targets).
As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).
- Return type:
None
- eraseEvidence(*args)
Remove the evidence, if any, corresponding to the node Id or name.
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- Return type:
None
- eraseTarget(*args)
Remove, if existing, the marginal target.
- Parameters:
target (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If one of the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- Return type:
None
- evidenceImpact(target, evs)
Create a pyAgrum.Potential for P(target|evs) (for all instanciation of target and evs)
- Parameters:
target (set) – a set of targets ids or names.
evs (set) – a set of nodes ids or names.
Warning
if some evs are d-separated, they are not included in the Potential.
- Returns:
a Potential for P(targets|evs)
- Return type:
- hardEvidenceNodes()
- Returns:
the set of nodes with hard evidence
- Return type:
set
- hasEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if some node(s) (or the one in parameters) have received evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasHardEvidence(nodeName)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a hard evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasSoftEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a soft evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- history()
- Returns:
the scheme history
- Return type:
tuple
- Raises:
pyAgrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
- isDrawnAtRandom()
- Returns:
True if variables are drawn at random
- Return type:
bool
- isTarget(*args)
- Parameters:
variable (int) – a node Id
nodeName (str) – a node name
- Returns:
True if variable is a (marginal) target
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- makeInference()
Perform the heavy computations needed to compute the targets’ posteriors
In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.
- Return type:
None
- maxIter()
- Returns:
the criterion on number of iterations
- Return type:
int
- maxTime()
- Returns:
the timeout(in seconds)
- Return type:
float
- messageApproximationScheme()
- Returns:
the approximation scheme message
- Return type:
str
- minEpsilonRate()
- Returns:
the value of the minimal epsilon rate
- Return type:
float
- nbrDrawnVar()
- Returns:
the number of variable drawn at each iteration
- Return type:
int
- nbrEvidence()
- Returns:
the number of evidence entered into the Bayesian network
- Return type:
int
- nbrHardEvidence()
- Returns:
the number of hard evidence entered into the Bayesian network
- Return type:
int
- nbrIterations()
- Returns:
the number of iterations
- Return type:
int
- nbrSoftEvidence()
- Returns:
the number of soft evidence entered into the Bayesian network
- Return type:
int
- nbrTargets()
- Returns:
the number of marginal targets
- Return type:
int
- periodSize()
- Returns:
the number of samples between 2 stopping
- Return type:
int
- Raises:
pyAgrum.OutOfBounds – If p<1
- posterior(*args)
Computes and returns the posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the posterior probability of the node
- Return type:
- Raises:
pyAgrum.UndefinedElement – If an element of nodes is not in targets
- setBurnIn(b)
- Parameters:
b (int) – size of burn in on number of iteration
- Return type:
None
- setDrawnAtRandom(_atRandom)
- Parameters:
_atRandom (bool) – indicates if variables should be drawn at random
- Return type:
None
- setEpsilon(eps)
- Parameters:
eps (float) – the epsilon we want to use
- Raises:
pyAgrum.OutOfBounds – If eps<0
- Return type:
None
- setEvidence(evidces)
Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node pyAgrum.InvalidArgument If the size of a value is different from the domain side of the node pyAgrum.FatalError If one value is a vector of 0s pyAgrum.UndefinedElement If one node does not belong to the Bayesian network
- setMaxIter(max)
- Parameters:
max (int) – the maximum number of iteration
- Raises:
pyAgrum.OutOfBounds – If max <= 1
- Return type:
None
- setMaxTime(timeout)
- Parameters:
tiemout (float) – stopping criterion on timeout (in seconds)
timeout (
float
)
- Raises:
pyAgrum.OutOfBounds – If timeout<=0.0
- Return type:
None
- setMinEpsilonRate(rate)
- Parameters:
rate (float) – the minimal epsilon rate
- Return type:
None
- setNbrDrawnVar(_nbr)
- Parameters:
_nbr (int) – the number of variables to be drawn at each iteration
- Return type:
None
- setPeriodSize(p)
- Parameters:
p (int) – number of samples between 2 stopping
- Raises:
pyAgrum.OutOfBounds – If p<1
- Return type:
None
- setTargets(targets)
Remove all the targets and add the ones in parameter.
- Parameters:
targets (set) – a set of targets
- Raises:
pyAgrum.UndefinedElement – If one target is not in the Bayes net
- setVerbosity(v)
- Parameters:
v (bool) – verbosity
- Return type:
None
- softEvidenceNodes()
- Returns:
the set of nodes with soft evidence
- Return type:
set
- targets()
- Returns:
the list of marginal targets
- Return type:
list
- property thisown
The membership flag
- updateEvidence(evidces)
Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node
pyAgrum.InvalidArgument – If the size of a value is different from the domain side of the node
pyAgrum.FatalError – If one value is a vector of 0s
pyAgrum.UndefinedElement – If one node does not belong to the Bayesian network
- verbosity()
- Returns:
True if the verbosity is enabled
- Return type:
bool
Simple Monte Carlo Sampling for BN
- class pyAgrum.MonteCarloSampling(bn)
Class used for Monte Carlo sampling inference algorithm.
- MonteCarloSampling(bn) -> MonteCarloSampling
- Parameters:
bn (pyAgrum.BayesNet) – a Bayesian network
- Parameters:
bn (
IBayesNet
)
- BN()
- Returns:
A constant reference over the IBayesNet referenced by this class.
- Return type:
pyAgrum.IBayesNet
- Raises:
pyAgrum.UndefinedElement – If no Bayes net has been assigned to the inference.
- H(*args)
- Parameters:
X (int) – a node Id
nodeName (str) – a node name
- Returns:
the computed Shanon’s entropy of a node given the observation
- Return type:
float
- addAllTargets()
Add all the nodes as targets.
- Return type:
None
- addEvidence(*args)
Adds a new evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val – (int) a node value
val – (str) the label of the node value
vals (list) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node already has an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- addTarget(*args)
Add a marginal target to the list of targets.
- Parameters:
target (int) – a node Id
nodeName (str) – a node name
- Raises:
pyAgrum.UndefinedElement – If target is not a NodeId in the Bayes net
- Return type:
None
- chgEvidence(*args)
Change the value of an already existing evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val (intstr) – a node value or the label of the node value
vals (List[float]) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node does not already have an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- currentPosterior(*args)
Computes and returns the current posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the current posterior probability of the node
- Return type:
- Raises:
UndefinedElement – If an element of nodes is not in targets
- currentTime()
- Returns:
get the current running time in second (float)
- Return type:
float
- epsilon()
- Returns:
the value of epsilon
- Return type:
float
- eraseAllEvidence()
Removes all the evidence entered into the network.
- Return type:
None
- eraseAllTargets()
Clear all previously defined targets (marginal and joint targets).
As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).
- Return type:
None
- eraseEvidence(*args)
Remove the evidence, if any, corresponding to the node Id or name.
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- Return type:
None
- eraseTarget(*args)
Remove, if existing, the marginal target.
- Parameters:
target (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If one of the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- Return type:
None
- evidenceImpact(target, evs)
Create a pyAgrum.Potential for P(target|evs) (for all instanciation of target and evs)
- Parameters:
target (set) – a set of targets ids or names.
evs (set) – a set of nodes ids or names.
Warning
if some evs are d-separated, they are not included in the Potential.
- Returns:
a Potential for P(targets|evs)
- Return type:
- hardEvidenceNodes()
- Returns:
the set of nodes with hard evidence
- Return type:
set
- hasEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if some node(s) (or the one in parameters) have received evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasHardEvidence(nodeName)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a hard evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasSoftEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a soft evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- history()
- Returns:
the scheme history
- Return type:
tuple
- Raises:
pyAgrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
- isTarget(*args)
- Parameters:
variable (int) – a node Id
nodeName (str) – a node name
- Returns:
True if variable is a (marginal) target
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- makeInference()
Perform the heavy computations needed to compute the targets’ posteriors
In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.
- Return type:
None
- maxIter()
- Returns:
the criterion on number of iterations
- Return type:
int
- maxTime()
- Returns:
the timeout(in seconds)
- Return type:
float
- messageApproximationScheme()
- Returns:
the approximation scheme message
- Return type:
str
- minEpsilonRate()
- Returns:
the value of the minimal epsilon rate
- Return type:
float
- nbrEvidence()
- Returns:
the number of evidence entered into the Bayesian network
- Return type:
int
- nbrHardEvidence()
- Returns:
the number of hard evidence entered into the Bayesian network
- Return type:
int
- nbrIterations()
- Returns:
the number of iterations
- Return type:
int
- nbrSoftEvidence()
- Returns:
the number of soft evidence entered into the Bayesian network
- Return type:
int
- nbrTargets()
- Returns:
the number of marginal targets
- Return type:
int
- periodSize()
- Returns:
the number of samples between 2 stopping
- Return type:
int
- Raises:
pyAgrum.OutOfBounds – If p<1
- posterior(*args)
Computes and returns the posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the posterior probability of the node
- Return type:
- Raises:
pyAgrum.UndefinedElement – If an element of nodes is not in targets
- setEpsilon(eps)
- Parameters:
eps (float) – the epsilon we want to use
- Raises:
pyAgrum.OutOfBounds – If eps<0
- Return type:
None
- setEvidence(evidces)
Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node pyAgrum.InvalidArgument If the size of a value is different from the domain side of the node pyAgrum.FatalError If one value is a vector of 0s pyAgrum.UndefinedElement If one node does not belong to the Bayesian network
- setMaxIter(max)
- Parameters:
max (int) – the maximum number of iteration
- Raises:
pyAgrum.OutOfBounds – If max <= 1
- Return type:
None
- setMaxTime(timeout)
- Parameters:
tiemout (float) – stopping criterion on timeout (in seconds)
timeout (
float
)
- Raises:
pyAgrum.OutOfBounds – If timeout<=0.0
- Return type:
None
- setMinEpsilonRate(rate)
- Parameters:
rate (float) – the minimal epsilon rate
- Return type:
None
- setPeriodSize(p)
- Parameters:
p (int) – number of samples between 2 stopping
- Raises:
pyAgrum.OutOfBounds – If p<1
- Return type:
None
- setTargets(targets)
Remove all the targets and add the ones in parameter.
- Parameters:
targets (set) – a set of targets
- Raises:
pyAgrum.UndefinedElement – If one target is not in the Bayes net
- setVerbosity(v)
- Parameters:
v (bool) – verbosity
- Return type:
None
- softEvidenceNodes()
- Returns:
the set of nodes with soft evidence
- Return type:
set
- targets()
- Returns:
the list of marginal targets
- Return type:
list
- property thisown
The membership flag
- updateEvidence(evidces)
Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node
pyAgrum.InvalidArgument – If the size of a value is different from the domain side of the node
pyAgrum.FatalError – If one value is a vector of 0s
pyAgrum.UndefinedElement – If one node does not belong to the Bayesian network
- verbosity()
- Returns:
True if the verbosity is enabled
- Return type:
bool
Weighted Sampling for BN
- class pyAgrum.WeightedSampling(bn)
Class used for Weighted sampling inference algorithm.
- WeightedSampling(bn) -> WeightedSampling
- Parameters:
bn (pyAgrum.BayesNet) – a Bayesian network
- Parameters:
bn (
IBayesNet
)
- BN()
- Returns:
A constant reference over the IBayesNet referenced by this class.
- Return type:
pyAgrum.IBayesNet
- Raises:
pyAgrum.UndefinedElement – If no Bayes net has been assigned to the inference.
- H(*args)
- Parameters:
X (int) – a node Id
nodeName (str) – a node name
- Returns:
the computed Shanon’s entropy of a node given the observation
- Return type:
float
- addAllTargets()
Add all the nodes as targets.
- Return type:
None
- addEvidence(*args)
Adds a new evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val – (int) a node value
val – (str) the label of the node value
vals (list) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node already has an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- addTarget(*args)
Add a marginal target to the list of targets.
- Parameters:
target (int) – a node Id
nodeName (str) – a node name
- Raises:
pyAgrum.UndefinedElement – If target is not a NodeId in the Bayes net
- Return type:
None
- chgEvidence(*args)
Change the value of an already existing evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val (intstr) – a node value or the label of the node value
vals (List[float]) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node does not already have an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- currentPosterior(*args)
Computes and returns the current posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the current posterior probability of the node
- Return type:
- Raises:
UndefinedElement – If an element of nodes is not in targets
- currentTime()
- Returns:
get the current running time in second (float)
- Return type:
float
- epsilon()
- Returns:
the value of epsilon
- Return type:
float
- eraseAllEvidence()
Removes all the evidence entered into the network.
- Return type:
None
- eraseAllTargets()
Clear all previously defined targets (marginal and joint targets).
As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).
- Return type:
None
- eraseEvidence(*args)
Remove the evidence, if any, corresponding to the node Id or name.
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- Return type:
None
- eraseTarget(*args)
Remove, if existing, the marginal target.
- Parameters:
target (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If one of the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- Return type:
None
- evidenceImpact(target, evs)
Create a pyAgrum.Potential for P(target|evs) (for all instanciation of target and evs)
- Parameters:
target (set) – a set of targets ids or names.
evs (set) – a set of nodes ids or names.
Warning
if some evs are d-separated, they are not included in the Potential.
- Returns:
a Potential for P(targets|evs)
- Return type:
- hardEvidenceNodes()
- Returns:
the set of nodes with hard evidence
- Return type:
set
- hasEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if some node(s) (or the one in parameters) have received evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasHardEvidence(nodeName)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a hard evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasSoftEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a soft evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- history()
- Returns:
the scheme history
- Return type:
tuple
- Raises:
pyAgrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
- isTarget(*args)
- Parameters:
variable (int) – a node Id
nodeName (str) – a node name
- Returns:
True if variable is a (marginal) target
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- makeInference()
Perform the heavy computations needed to compute the targets’ posteriors
In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.
- Return type:
None
- maxIter()
- Returns:
the criterion on number of iterations
- Return type:
int
- maxTime()
- Returns:
the timeout(in seconds)
- Return type:
float
- messageApproximationScheme()
- Returns:
the approximation scheme message
- Return type:
str
- minEpsilonRate()
- Returns:
the value of the minimal epsilon rate
- Return type:
float
- nbrEvidence()
- Returns:
the number of evidence entered into the Bayesian network
- Return type:
int
- nbrHardEvidence()
- Returns:
the number of hard evidence entered into the Bayesian network
- Return type:
int
- nbrIterations()
- Returns:
the number of iterations
- Return type:
int
- nbrSoftEvidence()
- Returns:
the number of soft evidence entered into the Bayesian network
- Return type:
int
- nbrTargets()
- Returns:
the number of marginal targets
- Return type:
int
- periodSize()
- Returns:
the number of samples between 2 stopping
- Return type:
int
- Raises:
pyAgrum.OutOfBounds – If p<1
- posterior(*args)
Computes and returns the posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the posterior probability of the node
- Return type:
- Raises:
pyAgrum.UndefinedElement – If an element of nodes is not in targets
- setEpsilon(eps)
- Parameters:
eps (float) – the epsilon we want to use
- Raises:
pyAgrum.OutOfBounds – If eps<0
- Return type:
None
- setEvidence(evidces)
Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node pyAgrum.InvalidArgument If the size of a value is different from the domain side of the node pyAgrum.FatalError If one value is a vector of 0s pyAgrum.UndefinedElement If one node does not belong to the Bayesian network
- setMaxIter(max)
- Parameters:
max (int) – the maximum number of iteration
- Raises:
pyAgrum.OutOfBounds – If max <= 1
- Return type:
None
- setMaxTime(timeout)
- Parameters:
tiemout (float) – stopping criterion on timeout (in seconds)
timeout (
float
)
- Raises:
pyAgrum.OutOfBounds – If timeout<=0.0
- Return type:
None
- setMinEpsilonRate(rate)
- Parameters:
rate (float) – the minimal epsilon rate
- Return type:
None
- setPeriodSize(p)
- Parameters:
p (int) – number of samples between 2 stopping
- Raises:
pyAgrum.OutOfBounds – If p<1
- Return type:
None
- setTargets(targets)
Remove all the targets and add the ones in parameter.
- Parameters:
targets (set) – a set of targets
- Raises:
pyAgrum.UndefinedElement – If one target is not in the Bayes net
- setVerbosity(v)
- Parameters:
v (bool) – verbosity
- Return type:
None
- softEvidenceNodes()
- Returns:
the set of nodes with soft evidence
- Return type:
set
- targets()
- Returns:
the list of marginal targets
- Return type:
list
- property thisown
The membership flag
- updateEvidence(evidces)
Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node
pyAgrum.InvalidArgument – If the size of a value is different from the domain side of the node
pyAgrum.FatalError – If one value is a vector of 0s
pyAgrum.UndefinedElement – If one node does not belong to the Bayesian network
- verbosity()
- Returns:
True if the verbosity is enabled
- Return type:
bool
Importance Sampling for BN
- class pyAgrum.ImportanceSampling(bn)
Class used for inferences using the Importance Sampling algorithm.
- ImportanceSampling(bn) -> ImportanceSampling
- Parameters:
bn (pyAgrum.BayesNet) – a Bayesian network
- Parameters:
bn (
IBayesNet
)
- BN()
- Returns:
A constant reference over the IBayesNet referenced by this class.
- Return type:
pyAgrum.IBayesNet
- Raises:
pyAgrum.UndefinedElement – If no Bayes net has been assigned to the inference.
- H(*args)
- Parameters:
X (int) – a node Id
nodeName (str) – a node name
- Returns:
the computed Shanon’s entropy of a node given the observation
- Return type:
float
- addAllTargets()
Add all the nodes as targets.
- Return type:
None
- addEvidence(*args)
Adds a new evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val – (int) a node value
val – (str) the label of the node value
vals (list) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node already has an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- addTarget(*args)
Add a marginal target to the list of targets.
- Parameters:
target (int) – a node Id
nodeName (str) – a node name
- Raises:
pyAgrum.UndefinedElement – If target is not a NodeId in the Bayes net
- Return type:
None
- chgEvidence(*args)
Change the value of an already existing evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val (intstr) – a node value or the label of the node value
vals (List[float]) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node does not already have an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- currentPosterior(*args)
Computes and returns the current posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the current posterior probability of the node
- Return type:
- Raises:
UndefinedElement – If an element of nodes is not in targets
- currentTime()
- Returns:
get the current running time in second (float)
- Return type:
float
- epsilon()
- Returns:
the value of epsilon
- Return type:
float
- eraseAllEvidence()
Removes all the evidence entered into the network.
- Return type:
None
- eraseAllTargets()
Clear all previously defined targets (marginal and joint targets).
As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).
- Return type:
None
- eraseEvidence(*args)
Remove the evidence, if any, corresponding to the node Id or name.
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- Return type:
None
- eraseTarget(*args)
Remove, if existing, the marginal target.
- Parameters:
target (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If one of the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- Return type:
None
- evidenceImpact(target, evs)
Create a pyAgrum.Potential for P(target|evs) (for all instanciation of target and evs)
- Parameters:
target (set) – a set of targets ids or names.
evs (set) – a set of nodes ids or names.
Warning
if some evs are d-separated, they are not included in the Potential.
- Returns:
a Potential for P(targets|evs)
- Return type:
- hardEvidenceNodes()
- Returns:
the set of nodes with hard evidence
- Return type:
set
- hasEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if some node(s) (or the one in parameters) have received evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasHardEvidence(nodeName)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a hard evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasSoftEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a soft evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- history()
- Returns:
the scheme history
- Return type:
tuple
- Raises:
pyAgrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
- isTarget(*args)
- Parameters:
variable (int) – a node Id
nodeName (str) – a node name
- Returns:
True if variable is a (marginal) target
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- makeInference()
Perform the heavy computations needed to compute the targets’ posteriors
In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.
- Return type:
None
- maxIter()
- Returns:
the criterion on number of iterations
- Return type:
int
- maxTime()
- Returns:
the timeout(in seconds)
- Return type:
float
- messageApproximationScheme()
- Returns:
the approximation scheme message
- Return type:
str
- minEpsilonRate()
- Returns:
the value of the minimal epsilon rate
- Return type:
float
- nbrEvidence()
- Returns:
the number of evidence entered into the Bayesian network
- Return type:
int
- nbrHardEvidence()
- Returns:
the number of hard evidence entered into the Bayesian network
- Return type:
int
- nbrIterations()
- Returns:
the number of iterations
- Return type:
int
- nbrSoftEvidence()
- Returns:
the number of soft evidence entered into the Bayesian network
- Return type:
int
- nbrTargets()
- Returns:
the number of marginal targets
- Return type:
int
- periodSize()
- Returns:
the number of samples between 2 stopping
- Return type:
int
- Raises:
pyAgrum.OutOfBounds – If p<1
- posterior(*args)
Computes and returns the posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the posterior probability of the node
- Return type:
- Raises:
pyAgrum.UndefinedElement – If an element of nodes is not in targets
- setEpsilon(eps)
- Parameters:
eps (float) – the epsilon we want to use
- Raises:
pyAgrum.OutOfBounds – If eps<0
- Return type:
None
- setEvidence(evidces)
Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node pyAgrum.InvalidArgument If the size of a value is different from the domain side of the node pyAgrum.FatalError If one value is a vector of 0s pyAgrum.UndefinedElement If one node does not belong to the Bayesian network
- setMaxIter(max)
- Parameters:
max (int) – the maximum number of iteration
- Raises:
pyAgrum.OutOfBounds – If max <= 1
- Return type:
None
- setMaxTime(timeout)
- Parameters:
tiemout (float) – stopping criterion on timeout (in seconds)
timeout (
float
)
- Raises:
pyAgrum.OutOfBounds – If timeout<=0.0
- Return type:
None
- setMinEpsilonRate(rate)
- Parameters:
rate (float) – the minimal epsilon rate
- Return type:
None
- setPeriodSize(p)
- Parameters:
p (int) – number of samples between 2 stopping
- Raises:
pyAgrum.OutOfBounds – If p<1
- Return type:
None
- setTargets(targets)
Remove all the targets and add the ones in parameter.
- Parameters:
targets (set) – a set of targets
- Raises:
pyAgrum.UndefinedElement – If one target is not in the Bayes net
- setVerbosity(v)
- Parameters:
v (bool) – verbosity
- Return type:
None
- softEvidenceNodes()
- Returns:
the set of nodes with soft evidence
- Return type:
set
- targets()
- Returns:
the list of marginal targets
- Return type:
list
- property thisown
The membership flag
- updateEvidence(evidces)
Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node
pyAgrum.InvalidArgument – If the size of a value is different from the domain side of the node
pyAgrum.FatalError – If one value is a vector of 0s
pyAgrum.UndefinedElement – If one node does not belong to the Bayesian network
- verbosity()
- Returns:
True if the verbosity is enabled
- Return type:
bool
Loopy sampling
Pure Loopy Gibbs Sampling
- class pyAgrum.LoopyGibbsSampling(bn)
Class used for inferences using a loopy version of importance sampling.
- LoopyImportanceSampling(bn) -> LoopyImportanceSampling
- Parameters:
bn (pyAgrum.BayesNet) – a Bayesian network
- Parameters:
bn (
IBayesNet
)
- BN()
- Returns:
A constant reference over the IBayesNet referenced by this class.
- Return type:
pyAgrum.IBayesNet
- Raises:
pyAgrum.UndefinedElement – If no Bayes net has been assigned to the inference.
- H(*args)
- Parameters:
X (int) – a node Id
nodeName (str) – a node name
- Returns:
the computed Shanon’s entropy of a node given the observation
- Return type:
float
- addAllTargets()
Add all the nodes as targets.
- Return type:
None
- addEvidence(*args)
Adds a new evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val – (int) a node value
val – (str) the label of the node value
vals (list) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node already has an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- addTarget(*args)
Add a marginal target to the list of targets.
- Parameters:
target (int) – a node Id
nodeName (str) – a node name
- Raises:
pyAgrum.UndefinedElement – If target is not a NodeId in the Bayes net
- Return type:
None
- burnIn()
- Returns:
size of burn in on number of iteration
- Return type:
int
- chgEvidence(*args)
Change the value of an already existing evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val (intstr) – a node value or the label of the node value
vals (List[float]) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node does not already have an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- currentPosterior(*args)
Computes and returns the current posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the current posterior probability of the node
- Return type:
- Raises:
UndefinedElement – If an element of nodes is not in targets
- currentTime()
- Returns:
get the current running time in second (float)
- Return type:
float
- epsilon()
- Returns:
the value of epsilon
- Return type:
float
- eraseAllEvidence()
Removes all the evidence entered into the network.
- Return type:
None
- eraseAllTargets()
Clear all previously defined targets (marginal and joint targets).
As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).
- Return type:
None
- eraseEvidence(*args)
Remove the evidence, if any, corresponding to the node Id or name.
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- Return type:
None
- eraseTarget(*args)
Remove, if existing, the marginal target.
- Parameters:
target (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If one of the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- Return type:
None
- evidenceImpact(target, evs)
Create a pyAgrum.Potential for P(target|evs) (for all instanciation of target and evs)
- Parameters:
target (set) – a set of targets ids or names.
evs (set) – a set of nodes ids or names.
Warning
if some evs are d-separated, they are not included in the Potential.
- Returns:
a Potential for P(targets|evs)
- Return type:
- hardEvidenceNodes()
- Returns:
the set of nodes with hard evidence
- Return type:
set
- hasEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if some node(s) (or the one in parameters) have received evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasHardEvidence(nodeName)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a hard evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasSoftEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a soft evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- history()
- Returns:
the scheme history
- Return type:
tuple
- Raises:
pyAgrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
- isDrawnAtRandom()
- Returns:
True if variables are drawn at random
- Return type:
bool
- isTarget(*args)
- Parameters:
variable (int) – a node Id
nodeName (str) – a node name
- Returns:
True if variable is a (marginal) target
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- makeInference()
Perform the heavy computations needed to compute the targets’ posteriors
In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.
- Return type:
None
- makeInference_()
- Return type:
None
- maxIter()
- Returns:
the criterion on number of iterations
- Return type:
int
- maxTime()
- Returns:
the timeout(in seconds)
- Return type:
float
- messageApproximationScheme()
- Returns:
the approximation scheme message
- Return type:
str
- minEpsilonRate()
- Returns:
the value of the minimal epsilon rate
- Return type:
float
- nbrDrawnVar()
- Returns:
the number of variable drawn at each iteration
- Return type:
int
- nbrEvidence()
- Returns:
the number of evidence entered into the Bayesian network
- Return type:
int
- nbrHardEvidence()
- Returns:
the number of hard evidence entered into the Bayesian network
- Return type:
int
- nbrIterations()
- Returns:
the number of iterations
- Return type:
int
- nbrSoftEvidence()
- Returns:
the number of soft evidence entered into the Bayesian network
- Return type:
int
- nbrTargets()
- Returns:
the number of marginal targets
- Return type:
int
- periodSize()
- Returns:
the number of samples between 2 stopping
- Return type:
int
- Raises:
pyAgrum.OutOfBounds – If p<1
- posterior(*args)
Computes and returns the posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the posterior probability of the node
- Return type:
- Raises:
pyAgrum.UndefinedElement – If an element of nodes is not in targets
- setBurnIn(b)
- Parameters:
b (int) – size of burn in on number of iteration
- Return type:
None
- setDrawnAtRandom(_atRandom)
- Parameters:
_atRandom (bool) – indicates if variables should be drawn at random
- Return type:
None
- setEpsilon(eps)
- Parameters:
eps (float) – the epsilon we want to use
- Raises:
pyAgrum.OutOfBounds – If eps<0
- Return type:
None
- setEvidence(evidces)
Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node pyAgrum.InvalidArgument If the size of a value is different from the domain side of the node pyAgrum.FatalError If one value is a vector of 0s pyAgrum.UndefinedElement If one node does not belong to the Bayesian network
- setMaxIter(max)
- Parameters:
max (int) – the maximum number of iteration
- Raises:
pyAgrum.OutOfBounds – If max <= 1
- Return type:
None
- setMaxTime(timeout)
- Parameters:
tiemout (float) – stopping criterion on timeout (in seconds)
timeout (
float
)
- Raises:
pyAgrum.OutOfBounds – If timeout<=0.0
- Return type:
None
- setMinEpsilonRate(rate)
- Parameters:
rate (float) – the minimal epsilon rate
- Return type:
None
- setNbrDrawnVar(_nbr)
- Parameters:
_nbr (int) – the number of variables to be drawn at each iteration
- Return type:
None
- setPeriodSize(p)
- Parameters:
p (int) – number of samples between 2 stopping
- Raises:
pyAgrum.OutOfBounds – If p<1
- Return type:
None
- setTargets(targets)
Remove all the targets and add the ones in parameter.
- Parameters:
targets (set) – a set of targets
- Raises:
pyAgrum.UndefinedElement – If one target is not in the Bayes net
- setVerbosity(v)
- Parameters:
v (bool) – verbosity
- Return type:
None
- setVirtualLBPSize(vlbpsize)
- Parameters:
vlbpsize (float) – the size of the virtual LBP
- Return type:
None
- softEvidenceNodes()
- Returns:
the set of nodes with soft evidence
- Return type:
set
- targets()
- Returns:
the list of marginal targets
- Return type:
list
- property thisown
The membership flag
- updateEvidence(evidces)
Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node
pyAgrum.InvalidArgument – If the size of a value is different from the domain side of the node
pyAgrum.FatalError – If one value is a vector of 0s
pyAgrum.UndefinedElement – If one node does not belong to the Bayesian network
- verbosity()
- Returns:
True if the verbosity is enabled
- Return type:
bool
Loopy Monte Carlo Sampling
- class pyAgrum.LoopyMonteCarloSampling(bn)
Class used for inferences using a loopy version of importance sampling.
- LoopyImportanceSampling(bn) -> LoopyImportanceSampling
- Parameters:
bn (pyAgrum.BayesNet) – a Bayesian network
- Parameters:
bn (
IBayesNet
)
- BN()
- Returns:
A constant reference over the IBayesNet referenced by this class.
- Return type:
pyAgrum.IBayesNet
- Raises:
pyAgrum.UndefinedElement – If no Bayes net has been assigned to the inference.
- H(*args)
- Parameters:
X (int) – a node Id
nodeName (str) – a node name
- Returns:
the computed Shanon’s entropy of a node given the observation
- Return type:
float
- addAllTargets()
Add all the nodes as targets.
- Return type:
None
- addEvidence(*args)
Adds a new evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val – (int) a node value
val – (str) the label of the node value
vals (list) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node already has an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- addTarget(*args)
Add a marginal target to the list of targets.
- Parameters:
target (int) – a node Id
nodeName (str) – a node name
- Raises:
pyAgrum.UndefinedElement – If target is not a NodeId in the Bayes net
- Return type:
None
- chgEvidence(*args)
Change the value of an already existing evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val (intstr) – a node value or the label of the node value
vals (List[float]) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node does not already have an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- currentPosterior(*args)
Computes and returns the current posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the current posterior probability of the node
- Return type:
- Raises:
UndefinedElement – If an element of nodes is not in targets
- currentTime()
- Returns:
get the current running time in second (float)
- Return type:
float
- epsilon()
- Returns:
the value of epsilon
- Return type:
float
- eraseAllEvidence()
Removes all the evidence entered into the network.
- Return type:
None
- eraseAllTargets()
Clear all previously defined targets (marginal and joint targets).
As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).
- Return type:
None
- eraseEvidence(*args)
Remove the evidence, if any, corresponding to the node Id or name.
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- Return type:
None
- eraseTarget(*args)
Remove, if existing, the marginal target.
- Parameters:
target (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If one of the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- Return type:
None
- evidenceImpact(target, evs)
Create a pyAgrum.Potential for P(target|evs) (for all instanciation of target and evs)
- Parameters:
target (set) – a set of targets ids or names.
evs (set) – a set of nodes ids or names.
Warning
if some evs are d-separated, they are not included in the Potential.
- Returns:
a Potential for P(targets|evs)
- Return type:
- hardEvidenceNodes()
- Returns:
the set of nodes with hard evidence
- Return type:
set
- hasEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if some node(s) (or the one in parameters) have received evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasHardEvidence(nodeName)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a hard evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasSoftEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a soft evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- history()
- Returns:
the scheme history
- Return type:
tuple
- Raises:
pyAgrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
- isTarget(*args)
- Parameters:
variable (int) – a node Id
nodeName (str) – a node name
- Returns:
True if variable is a (marginal) target
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- makeInference()
Perform the heavy computations needed to compute the targets’ posteriors
In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.
- Return type:
None
- makeInference_()
- Return type:
None
- maxIter()
- Returns:
the criterion on number of iterations
- Return type:
int
- maxTime()
- Returns:
the timeout(in seconds)
- Return type:
float
- messageApproximationScheme()
- Returns:
the approximation scheme message
- Return type:
str
- minEpsilonRate()
- Returns:
the value of the minimal epsilon rate
- Return type:
float
- nbrEvidence()
- Returns:
the number of evidence entered into the Bayesian network
- Return type:
int
- nbrHardEvidence()
- Returns:
the number of hard evidence entered into the Bayesian network
- Return type:
int
- nbrIterations()
- Returns:
the number of iterations
- Return type:
int
- nbrSoftEvidence()
- Returns:
the number of soft evidence entered into the Bayesian network
- Return type:
int
- nbrTargets()
- Returns:
the number of marginal targets
- Return type:
int
- periodSize()
- Returns:
the number of samples between 2 stopping
- Return type:
int
- Raises:
pyAgrum.OutOfBounds – If p<1
- posterior(*args)
Computes and returns the posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the posterior probability of the node
- Return type:
- Raises:
pyAgrum.UndefinedElement – If an element of nodes is not in targets
- setEpsilon(eps)
- Parameters:
eps (float) – the epsilon we want to use
- Raises:
pyAgrum.OutOfBounds – If eps<0
- Return type:
None
- setEvidence(evidces)
Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node pyAgrum.InvalidArgument If the size of a value is different from the domain side of the node pyAgrum.FatalError If one value is a vector of 0s pyAgrum.UndefinedElement If one node does not belong to the Bayesian network
- setMaxIter(max)
- Parameters:
max (int) – the maximum number of iteration
- Raises:
pyAgrum.OutOfBounds – If max <= 1
- Return type:
None
- setMaxTime(timeout)
- Parameters:
tiemout (float) – stopping criterion on timeout (in seconds)
timeout (
float
)
- Raises:
pyAgrum.OutOfBounds – If timeout<=0.0
- Return type:
None
- setMinEpsilonRate(rate)
- Parameters:
rate (float) – the minimal epsilon rate
- Return type:
None
- setPeriodSize(p)
- Parameters:
p (int) – number of samples between 2 stopping
- Raises:
pyAgrum.OutOfBounds – If p<1
- Return type:
None
- setTargets(targets)
Remove all the targets and add the ones in parameter.
- Parameters:
targets (set) – a set of targets
- Raises:
pyAgrum.UndefinedElement – If one target is not in the Bayes net
- setVerbosity(v)
- Parameters:
v (bool) – verbosity
- Return type:
None
- setVirtualLBPSize(vlbpsize)
- Parameters:
vlbpsize (float) – the size of the virtual LBP
- Return type:
None
- softEvidenceNodes()
- Returns:
the set of nodes with soft evidence
- Return type:
set
- targets()
- Returns:
the list of marginal targets
- Return type:
list
- property thisown
The membership flag
- updateEvidence(evidces)
Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node
pyAgrum.InvalidArgument – If the size of a value is different from the domain side of the node
pyAgrum.FatalError – If one value is a vector of 0s
pyAgrum.UndefinedElement – If one node does not belong to the Bayesian network
- verbosity()
- Returns:
True if the verbosity is enabled
- Return type:
bool
Loopy Weighted Sampling
- class pyAgrum.LoopyWeightedSampling(bn)
Class used for inferences using a loopy version of importance sampling.
- LoopyImportanceSampling(bn) -> LoopyImportanceSampling
- Parameters:
bn (pyAgrum.BayesNet) – a Bayesian network
- Parameters:
bn (
IBayesNet
)
- BN()
- Returns:
A constant reference over the IBayesNet referenced by this class.
- Return type:
pyAgrum.IBayesNet
- Raises:
pyAgrum.UndefinedElement – If no Bayes net has been assigned to the inference.
- H(*args)
- Parameters:
X (int) – a node Id
nodeName (str) – a node name
- Returns:
the computed Shanon’s entropy of a node given the observation
- Return type:
float
- addAllTargets()
Add all the nodes as targets.
- Return type:
None
- addEvidence(*args)
Adds a new evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val – (int) a node value
val – (str) the label of the node value
vals (list) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node already has an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- addTarget(*args)
Add a marginal target to the list of targets.
- Parameters:
target (int) – a node Id
nodeName (str) – a node name
- Raises:
pyAgrum.UndefinedElement – If target is not a NodeId in the Bayes net
- Return type:
None
- chgEvidence(*args)
Change the value of an already existing evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val (intstr) – a node value or the label of the node value
vals (List[float]) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node does not already have an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- currentPosterior(*args)
Computes and returns the current posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the current posterior probability of the node
- Return type:
- Raises:
UndefinedElement – If an element of nodes is not in targets
- currentTime()
- Returns:
get the current running time in second (float)
- Return type:
float
- epsilon()
- Returns:
the value of epsilon
- Return type:
float
- eraseAllEvidence()
Removes all the evidence entered into the network.
- Return type:
None
- eraseAllTargets()
Clear all previously defined targets (marginal and joint targets).
As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).
- Return type:
None
- eraseEvidence(*args)
Remove the evidence, if any, corresponding to the node Id or name.
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- Return type:
None
- eraseTarget(*args)
Remove, if existing, the marginal target.
- Parameters:
target (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If one of the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- Return type:
None
- evidenceImpact(target, evs)
Create a pyAgrum.Potential for P(target|evs) (for all instanciation of target and evs)
- Parameters:
target (set) – a set of targets ids or names.
evs (set) – a set of nodes ids or names.
Warning
if some evs are d-separated, they are not included in the Potential.
- Returns:
a Potential for P(targets|evs)
- Return type:
- hardEvidenceNodes()
- Returns:
the set of nodes with hard evidence
- Return type:
set
- hasEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if some node(s) (or the one in parameters) have received evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasHardEvidence(nodeName)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a hard evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasSoftEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a soft evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- history()
- Returns:
the scheme history
- Return type:
tuple
- Raises:
pyAgrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
- isTarget(*args)
- Parameters:
variable (int) – a node Id
nodeName (str) – a node name
- Returns:
True if variable is a (marginal) target
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- makeInference()
Perform the heavy computations needed to compute the targets’ posteriors
In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.
- Return type:
None
- makeInference_()
- Return type:
None
- maxIter()
- Returns:
the criterion on number of iterations
- Return type:
int
- maxTime()
- Returns:
the timeout(in seconds)
- Return type:
float
- messageApproximationScheme()
- Returns:
the approximation scheme message
- Return type:
str
- minEpsilonRate()
- Returns:
the value of the minimal epsilon rate
- Return type:
float
- nbrEvidence()
- Returns:
the number of evidence entered into the Bayesian network
- Return type:
int
- nbrHardEvidence()
- Returns:
the number of hard evidence entered into the Bayesian network
- Return type:
int
- nbrIterations()
- Returns:
the number of iterations
- Return type:
int
- nbrSoftEvidence()
- Returns:
the number of soft evidence entered into the Bayesian network
- Return type:
int
- nbrTargets()
- Returns:
the number of marginal targets
- Return type:
int
- periodSize()
- Returns:
the number of samples between 2 stopping
- Return type:
int
- Raises:
pyAgrum.OutOfBounds – If p<1
- posterior(*args)
Computes and returns the posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the posterior probability of the node
- Return type:
- Raises:
pyAgrum.UndefinedElement – If an element of nodes is not in targets
- setEpsilon(eps)
- Parameters:
eps (float) – the epsilon we want to use
- Raises:
pyAgrum.OutOfBounds – If eps<0
- Return type:
None
- setEvidence(evidces)
Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node pyAgrum.InvalidArgument If the size of a value is different from the domain side of the node pyAgrum.FatalError If one value is a vector of 0s pyAgrum.UndefinedElement If one node does not belong to the Bayesian network
- setMaxIter(max)
- Parameters:
max (int) – the maximum number of iteration
- Raises:
pyAgrum.OutOfBounds – If max <= 1
- Return type:
None
- setMaxTime(timeout)
- Parameters:
tiemout (float) – stopping criterion on timeout (in seconds)
timeout (
float
)
- Raises:
pyAgrum.OutOfBounds – If timeout<=0.0
- Return type:
None
- setMinEpsilonRate(rate)
- Parameters:
rate (float) – the minimal epsilon rate
- Return type:
None
- setPeriodSize(p)
- Parameters:
p (int) – number of samples between 2 stopping
- Raises:
pyAgrum.OutOfBounds – If p<1
- Return type:
None
- setTargets(targets)
Remove all the targets and add the ones in parameter.
- Parameters:
targets (set) – a set of targets
- Raises:
pyAgrum.UndefinedElement – If one target is not in the Bayes net
- setVerbosity(v)
- Parameters:
v (bool) – verbosity
- Return type:
None
- setVirtualLBPSize(vlbpsize)
- Parameters:
vlbpsize (float) – the size of the virtual LBP
- Return type:
None
- softEvidenceNodes()
- Returns:
the set of nodes with soft evidence
- Return type:
set
- targets()
- Returns:
the list of marginal targets
- Return type:
list
- property thisown
The membership flag
- updateEvidence(evidces)
Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node
pyAgrum.InvalidArgument – If the size of a value is different from the domain side of the node
pyAgrum.FatalError – If one value is a vector of 0s
pyAgrum.UndefinedElement – If one node does not belong to the Bayesian network
- verbosity()
- Returns:
True if the verbosity is enabled
- Return type:
bool
Loopy Importance Sampling
- class pyAgrum.LoopyImportanceSampling(bn)
Class used for inferences using a loopy version of importance sampling.
- LoopyImportanceSampling(bn) -> LoopyImportanceSampling
- Parameters:
bn (pyAgrum.BayesNet) – a Bayesian network
- Parameters:
bn (
IBayesNet
)
- BN()
- Returns:
A constant reference over the IBayesNet referenced by this class.
- Return type:
pyAgrum.IBayesNet
- Raises:
pyAgrum.UndefinedElement – If no Bayes net has been assigned to the inference.
- H(*args)
- Parameters:
X (int) – a node Id
nodeName (str) – a node name
- Returns:
the computed Shanon’s entropy of a node given the observation
- Return type:
float
- addAllTargets()
Add all the nodes as targets.
- Return type:
None
- addEvidence(*args)
Adds a new evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val – (int) a node value
val – (str) the label of the node value
vals (list) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node already has an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- addTarget(*args)
Add a marginal target to the list of targets.
- Parameters:
target (int) – a node Id
nodeName (str) – a node name
- Raises:
pyAgrum.UndefinedElement – If target is not a NodeId in the Bayes net
- Return type:
None
- chgEvidence(*args)
Change the value of an already existing evidence on a node (might be soft or hard).
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
val (intstr) – a node value or the label of the node value
vals (List[float]) – a list of values
- Raises:
pyAgrum.InvalidArgument – If the node does not already have an evidence
pyAgrum.InvalidArgument – If val is not a value for the node
pyAgrum.InvalidArgument – If the size of vals is different from the domain side of the node
pyAgrum.FatalError – If vals is a vector of 0s
pyAgrum.UndefinedElement – If the node does not belong to the Bayesian network
- Return type:
None
- currentPosterior(*args)
Computes and returns the current posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the current posterior probability of the node
- Return type:
- Raises:
UndefinedElement – If an element of nodes is not in targets
- currentTime()
- Returns:
get the current running time in second (float)
- Return type:
float
- epsilon()
- Returns:
the value of epsilon
- Return type:
float
- eraseAllEvidence()
Removes all the evidence entered into the network.
- Return type:
None
- eraseAllTargets()
Clear all previously defined targets (marginal and joint targets).
As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).
- Return type:
None
- eraseEvidence(*args)
Remove the evidence, if any, corresponding to the node Id or name.
- Parameters:
id (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- Return type:
None
- eraseTarget(*args)
Remove, if existing, the marginal target.
- Parameters:
target (int) – a node Id
nodeName (int) – a node name
- Raises:
pyAgrum.IndexError – If one of the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- Return type:
None
- evidenceImpact(target, evs)
Create a pyAgrum.Potential for P(target|evs) (for all instanciation of target and evs)
- Parameters:
target (set) – a set of targets ids or names.
evs (set) – a set of nodes ids or names.
Warning
if some evs are d-separated, they are not included in the Potential.
- Returns:
a Potential for P(targets|evs)
- Return type:
- hardEvidenceNodes()
- Returns:
the set of nodes with hard evidence
- Return type:
set
- hasEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if some node(s) (or the one in parameters) have received evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasHardEvidence(nodeName)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a hard evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- hasSoftEvidence(*args)
- Parameters:
id (int) – a node Id
nodeName (str) – a node name
- Returns:
True if node has received a soft evidence
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
- history()
- Returns:
the scheme history
- Return type:
tuple
- Raises:
pyAgrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
- isTarget(*args)
- Parameters:
variable (int) – a node Id
nodeName (str) – a node name
- Returns:
True if variable is a (marginal) target
- Return type:
bool
- Raises:
pyAgrum.IndexError – If the node does not belong to the Bayesian network
pyAgrum.UndefinedElement – If node Id is not in the Bayesian network
- makeInference()
Perform the heavy computations needed to compute the targets’ posteriors
In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.
- Return type:
None
- makeInference_()
- Return type:
None
- maxIter()
- Returns:
the criterion on number of iterations
- Return type:
int
- maxTime()
- Returns:
the timeout(in seconds)
- Return type:
float
- messageApproximationScheme()
- Returns:
the approximation scheme message
- Return type:
str
- minEpsilonRate()
- Returns:
the value of the minimal epsilon rate
- Return type:
float
- nbrEvidence()
- Returns:
the number of evidence entered into the Bayesian network
- Return type:
int
- nbrHardEvidence()
- Returns:
the number of hard evidence entered into the Bayesian network
- Return type:
int
- nbrIterations()
- Returns:
the number of iterations
- Return type:
int
- nbrSoftEvidence()
- Returns:
the number of soft evidence entered into the Bayesian network
- Return type:
int
- nbrTargets()
- Returns:
the number of marginal targets
- Return type:
int
- periodSize()
- Returns:
the number of samples between 2 stopping
- Return type:
int
- Raises:
pyAgrum.OutOfBounds – If p<1
- posterior(*args)
Computes and returns the posterior of a node.
- Parameters:
var (int) – the node Id of the node for which we need a posterior probability
nodeName (str) – the node name of the node for which we need a posterior probability
- Returns:
a const ref to the posterior probability of the node
- Return type:
- Raises:
pyAgrum.UndefinedElement – If an element of nodes is not in targets
- setEpsilon(eps)
- Parameters:
eps (float) – the epsilon we want to use
- Raises:
pyAgrum.OutOfBounds – If eps<0
- Return type:
None
- setEvidence(evidces)
Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node pyAgrum.InvalidArgument If the size of a value is different from the domain side of the node pyAgrum.FatalError If one value is a vector of 0s pyAgrum.UndefinedElement If one node does not belong to the Bayesian network
- setMaxIter(max)
- Parameters:
max (int) – the maximum number of iteration
- Raises:
pyAgrum.OutOfBounds – If max <= 1
- Return type:
None
- setMaxTime(timeout)
- Parameters:
tiemout (float) – stopping criterion on timeout (in seconds)
timeout (
float
)
- Raises:
pyAgrum.OutOfBounds – If timeout<=0.0
- Return type:
None
- setMinEpsilonRate(rate)
- Parameters:
rate (float) – the minimal epsilon rate
- Return type:
None
- setPeriodSize(p)
- Parameters:
p (int) – number of samples between 2 stopping
- Raises:
pyAgrum.OutOfBounds – If p<1
- Return type:
None
- setTargets(targets)
Remove all the targets and add the ones in parameter.
- Parameters:
targets (set) – a set of targets
- Raises:
pyAgrum.UndefinedElement – If one target is not in the Bayes net
- setVerbosity(v)
- Parameters:
v (bool) – verbosity
- Return type:
None
- setVirtualLBPSize(vlbpsize)
- Parameters:
vlbpsize (float) – the size of the virtual LBP
- Return type:
None
- softEvidenceNodes()
- Returns:
the set of nodes with soft evidence
- Return type:
set
- targets()
- Returns:
the list of marginal targets
- Return type:
list
- property thisown
The membership flag
- updateEvidence(evidces)
Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).
- Parameters:
evidces (Dict[str,Union[int,str,List[float]]] or List[pyAgrum.Potential]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
- Raises:
pyAgrum.InvalidArgument – If one value is not a value for the node
pyAgrum.InvalidArgument – If the size of a value is different from the domain side of the node
pyAgrum.FatalError – If one value is a vector of 0s
pyAgrum.UndefinedElement – If one node does not belong to the Bayesian network
- verbosity()
- Returns:
True if the verbosity is enabled
- Return type:
bool