Quasi-continuous BN
aGrUM cannot (currently) deal with with continuous variables. However, a discrete variable with a large enough domain size is an approximation of such variables.
In [1]:
import pyAgrum as gum
import pyAgrum.lib.notebook as gnb
#nbr of states for quasi continuous variables. You can change the value
#but be careful of the quadratic behavior of both memory and time complexity
#in this example.
minB,maxB=-3,3
minC,maxC=4,14
NB=200
In [2]:
# the line with fastBN replace the commented ones.
#bn=gum.BayesNet()
#bn.add(gum.LabelizedVariable("A","A binary variable",2))
#bn.add(gum.NumericalDiscreteVariable("B","A range variable",minB,maxB,NB))
#bn.addArc("A","B")
bn=gum.fastBN(f"A[3]->B[{minB}:{maxB}:{NB}]")
gnb.showBN(bn)
In [3]:
bn.cpt("A")[:]=[0.4, 0.1,0.5]
gnb.showProba(bn.cpt("A"))
CPT for quasi-continuous variables (with parents)
Using python (and scipy), it is easy to find pdf for continuous variable
In [4]:
from scipy.stats import norm,genhyperbolic
bn.cpt("B").fillFromDistribution(norm,loc="-2+A*2",scale="(5+A*4)/20")
gnb.flow.clear()
gnb.flow.add(gnb.getProba(bn.cpt("B").extract({"A":0})),caption="P(B|A=0)")
gnb.flow.add(gnb.getProba(bn.cpt("B").extract({"A":1})),caption="P(B|A=1)")
gnb.flow.add(gnb.getProba(bn.cpt("B").extract({"A":2})),caption="P(B|A=1)")
gnb.flow.display()
Quasi-continuous inference (with no evidence)
In [5]:
gnb.showPosterior(bn,target="B",evs={})
gnb.showInference(bn)
Quasi-continuous inference with numerical evidence expressed as logical propositions evEq
or evIn
,evLt
, evGt
; and boolean operators
In [6]:
gnb.showInference(bn,evs=[bn.evIn("B",-1,2)]) # we observed B between -1 and 2
In [7]:
gnb.showInference(bn,evs=[~ bn.evIn("B",-1,0)]) # we observed B not being between -1 and 0
In [8]:
gnb.showInference(bn,evs=[bn.evLt("B",1)]) # we observed B being less than 1
In [9]:
gnb.showInference(bn,evs=[bn.evEq("B",0) |
bn.evEq("B",-2)]) # we observed B being -1 or 2
Quasi-continuous variable with quasi-continuous parent
In [10]:
bn=gum.fastBN("A[3]->B->C",
f"[{minB}:{maxB}:{NB}]") # default type of variables (for B and C)
gnb.showBN(bn) # B and C are quasi-continouous
Even if this BN is quite small (and linear), the size of nodes \(B\) et \(C\) are rather big and creates a complex model (NBxNB parameters in \(P(C|B)\)).
In [11]:
print("nombre de paramètres du bn : {0}".format(bn.dim()))
print("domaine du bn : 10^{0}".format(bn.log10DomainSize()))
nombre de paramètres du bn : 40399
domaine du bn : 10^5.079181246047625
In [12]:
from scipy.stats import gamma
bn.cpt("B").fillFromDistribution(norm,loc="-2+A*2",scale="(5+A*4)/20")
bn.cpt("C").fillFromDistribution(gamma,a="B+3.1",loc=-3,scale=5)
def showCgivenBequals(x:float):
gnb.flow.add(gnb.getProba(bn.cpt("C").extract({"B":f"{x}"})),
caption=f"P(C|B={x})")
gnb.flow.clear()
showCgivenBequals(0)
showCgivenBequals(3)
showCgivenBequals(-3)
#showB(NB-1)
gnb.flow.display()
Inference in quasi-continuous BN
In [13]:
import time
ts = time.time()
ie=gum.LazyPropagation(bn)
ie.makeInference()
q=ie.posterior("C")
te=time.time()
gnb.flow.add(gnb.getPosterior(bn,target="C",evs={}),caption=f"P(C) computed in {te-ts:2.5f} sec for a model with {bn.dim()} parameters")
gnb.flow.display()
Changing prior
In [14]:
gnb.showInference(bn,size="10")
In [15]:
bn.cpt("A")[:]=[0.9,0.1,0.0]
gnb.showInference(bn,size="10")
inference with evidence in quasi-continuous BN
We want to compute
\(P(A | C=3)\)
\(P(B | C=3)\)
In [16]:
ie=gum.LazyPropagation(bn)
ie.setEvidence([bn.evEq("C",3)])
ie.makeInference()
gnb.showProba(ie.posterior("B"))
In [17]:
gnb.showProba(ie.posterior("A"))
In [18]:
gnb.showInference(bn,evs=[bn.evEq("C",3)])
Multiple inference : MAP DECISION between complex distributions
What is the behaviour of \(P(A | C=i)\) when \(i\) varies ? I.e. we perform a MAP decision between the two models (\(A=0\) for the Gaussian distribution and \(A=1\) for the generalized hyperbolic distribution).
In [19]:
import matplotlib.pyplot as plt
import numpy as np
bn.cpt("A")[:]=[0.1, 0.7,0.2]
ie=gum.LazyPropagation(bn)
p0=[]
p1=[]
p2=[]
x=bn.variable("C").ticks()
for i in x:
ie.setEvidence([bn.evEq("C",i)])
ie.makeInference()
p0.append(ie.posterior("A")[0])
p1.append(ie.posterior("A")[1])
p2.append(ie.posterior("A")[2])
plt.plot(x,p0)
plt.plot(x,p1)
plt.plot(x,p2)
plt.title(f"P( A | C=x) with prior p(A)={bn.cpt('A').tolist()}")
plt.legend(["A=0","A=1","A=2"],loc='best')
inters=(np.transpose(p0)>np.transpose(p1)).argmin()
plt.text(x[inters]+0.2,p0[inters],
"{0:5.4},{1:5.4f} ".format(x[inters],p0[inters]),
bbox=dict(facecolor='red', alpha=0.1),ha='left');
plt.show()
print("\n\n")
print("==========================================================")
print(f" DECISION RULE : If C<{x[inters]:0.3f} Then A=0 else A=1")
print("==========================================================")
==========================================================
DECISION RULE : If C<-1.950 Then A=0 else A=1
==========================================================
Same MAP with another \(P(A)\)
In [20]:
bn.cpt("A").fillWith([0.4, 0.3, 0.3])
ie=gum.LazyPropagation(bn)
p0=[]
p1=[]
p2=[]
x=bn.variable("C").ticks()
for i in x:
ie.setEvidence([bn.evEq("C",i)])
ie.makeInference()
p0.append(ie.posterior("A")[0])
p1.append(ie.posterior("A")[1])
p2.append(ie.posterior("A")[2])
plt.plot(x,p0)
plt.plot(x,p1)
plt.plot(x,p2)
plt.title(f"P( A | C=x) with prior p(A)={bn.cpt('A').tolist()}")
plt.legend(["A=0","A=1","A=2"],loc='best')
inters1=(np.transpose(p0)>np.transpose(p1)).argmin()
inters2=(np.transpose(p1)>np.transpose(p2)).argmin()
plt.text(x[inters1]-0.2,p0[inters1],
"{0:5.3f},{1:5.4f} ".format(x[inters1],p0[inters1]),
bbox=dict(facecolor='red', alpha=0.1),ha='right');
plt.text(x[inters2]+0.2,p1[inters2],
"{0:5.3f},{1:5.4f} ".format(x[inters2],p0[inters2]),
bbox=dict(facecolor='red', alpha=0.1),ha='left');
plt.show()
print("\n\n")
print("==========================================================")
print(f" DECISION RULE : If C<{x[inters1]:0.3f} Then A=0")
print(f" ElseIf C<{x[inters2]:0.3f} Then A=1")
print(f" Else A=2")
print("==========================================================")
==========================================================
DECISION RULE : If C<0.540 Then A=0
ElseIf C<1.410 Then A=1
Else A=2
==========================================================
In [ ]: