Markov random fields (a.k.a. Markov Networks)
In [1]:
import pyAgrum as gum
import pyAgrum.lib.notebook as gnb
import pyAgrum.lib.mrf2graph as m2g
building a Markov random field
In [2]:
gum.config.reset() # back to default
gum.config['notebook','default_markovrandomfield_view']='graph'
mn=gum.fastMRF("A--B--C;C--D;B--E--F;F--D--G;H--J;E--A;J")
mn
Out[2]:
Using pyAgrum.config
, it is possible to adapt the graphical representations for Markov random field (see the notebook 99-Tools_configForPyAgrum.ipynb).
In [3]:
gum.config.reset() # back to default
gum.config['factorgraph','edge_length']='0.4'
gnb.showMRF(mn)
In [4]:
gum.config.reset() # back to default
print("Default view for Markov random field: "+gum.config['notebook','default_markovrandomfield_view'])
gum.config['notebook','default_markovrandomfield_view']='graph'
print("modified to: "+gum.config['notebook','default_markovrandomfield_view'])
mn
Default view for Markov random field: factorgraph
modified to: graph
Out[4]:
In [5]:
gnb.sideBySide(gnb.getMRF(mn,view="graph",size="5"),
gnb.getMRF(mn,view="factorgraph",size="5"))
In [6]:
gnb.showMRF(mn)
print(mn)
MRF{nodes: 9, edges: 12, domainSize: 512, dim: 38}
Accessors for Markov random fields
In [7]:
print(f"nodes : {mn.nodes()}")
print(f"node names : {mn.names()}")
print(f"edges : {mn.edges()}")
print(f"components : {mn.connectedComponents()}")
print(f"factors : {mn.factors()}")
print(f"factor(C,D) : {mn.factor({2,3})}")
print(f"factor(C,D) : {mn.factor({'C','D'})}")
nodes : {0, 1, 2, 3, 4, 5, 6, 7, 8}
node names : {'J', 'E', 'F', 'D', 'H', 'B', 'A', 'C', 'G'}
edges : {(0, 1), (1, 2), (0, 4), (1, 5), (1, 4), (2, 3), (4, 5), (0, 2), (5, 6), (7, 8), (3, 6), (3, 5)}
components : {0: {0, 1, 2, 3, 4, 5, 6}, 7: {8, 7}}
factors : [{0, 1, 2}, {2, 3}, {8, 7}, {1, 4, 5}, {3, 5, 6}, {0, 4}, {8}]
factor(C,D) :
|| C |
D ||0 |1 |
------||---------|---------|
0 || 0.3709 | 0.0939 |
1 || 0.0304 | 0.1919 |
factor(C,D) :
|| C |
D ||0 |1 |
------||---------|---------|
0 || 0.3709 | 0.0939 |
1 || 0.0304 | 0.1919 |
In [8]:
try:
mn.factor({0,1})
except gum.GumException as e:
print(e)
try:
mn.factor({"A","B"})
except gum.GumException as e:
print(e)
[pyAgrum] Object not found: No element with the key <{1,0}>
[pyAgrum] Object not found: No element with the key <{1,0}>
Manipulating factors
In [9]:
mn.factor({'A','B','C'})
Out[9]:
|
| ||
---|---|---|---|
| 0.4471 | 0.5408 | |
0.3414 | 0.5997 | ||
| 0.4171 | 0.7707 | |
0.7081 | 0.0170 |
In [10]:
mn.factor({'A','B','C'})[{'B':0}]
Out[10]:
array([[0.44714656, 0.54078863],
[0.41709187, 0.77066469]])
In [11]:
mn.factor({'A','B','C'})[{'B':0}]=[[1,2],[3,4]]
mn.factor({'A','B','C'})
Out[11]:
|
| ||
---|---|---|---|
| 1.0000 | 2.0000 | |
0.3414 | 0.5997 | ||
| 3.0000 | 4.0000 | |
0.7081 | 0.0170 |
Customizing graphical representation
In [12]:
gum.config.reset() # back to default
gum.config['factorgraph','edge_length']='0.5'
maxnei=max([len(mn.neighbours(n)) for n in mn.nodes()])
nodemap={n:len(mn.neighbours(mn.idFromName(n)))/maxnei for n in mn.names()}
facmax=max([len(f) for f in mn.factors()])
fgma=lambda factor: (1+len(factor)**2)/(1+facmax*facmax)
gnb.flow.row(gnb.getGraph(m2g.MRF2UGdot(mn)),
gnb.getGraph(m2g.MRF2UGdot(mn,nodeColor=nodemap)),
gnb.getGraph(m2g.MRF2FactorGraphdot(mn)),
gnb.getGraph(m2g.MRF2FactorGraphdot(mn,factorColor=fgma,nodeColor=nodemap)),
captions=['Markov random field',
'MarkovRandomField with colored node w.r.t number of neighbours',
'MarkovRandomField as factor graph',
'MRF with colored factor w.r.t to the size of scope'])
from BayesNet to MarkovRandomField
In [13]:
bn=gum.fastBN("A->B<-C->D->E->F<-B<-G;A->H->I;C->J<-K<-L")
mn=gum.MarkovRandomField.fromBN(bn)
gnb.flow.row(bn,
gnb.getGraph(m2g.MRF2UGdot(mn)),
captions=['a Bayesian network',
'the corresponding Markov random field'])
In [14]:
# The corresponding factor graph
m2g.MRF2FactorGraphdot(mn)
Out[14]:
Inference in Markov random field
In [15]:
bn=gum.fastBN("A->B<-C->D->E->F<-B<-G;A->H->I;C->J<-K<-L")
iebn=gum.LazyPropagation(bn)
mn=gum.MarkovRandomField.fromBN(bn)
iemn=gum.ShaferShenoyMRFInference(mn)
iemn.setEvidence({"A":1,"F":[0.4,0.8]})
iemn.makeInference()
iemn.posterior("B")
Out[15]:
|
|
---|---|
0.4791 | 0.5209 |
In [16]:
def affAGC(evs):
gnb.sideBySide(gnb.getSideBySide(gum.getPosterior(bn,target="A",evs=evs),
gum.getPosterior(bn,target="G",evs=evs),
gum.getPosterior(bn,target="C",evs=evs)),
gnb.getSideBySide(gum.getPosterior(mn,target="A",evs=evs),
gum.getPosterior(mn,target="G",evs=evs),
gum.getPosterior(mn,target="C",evs=evs)),
captions=["Inference in the Bayesian network bn with evidence "+str(evs),
"Inference in the Markov random field mn with evidence "+str(evs)]
)
print("Inference for both the corresponding models in BayesNet and Markoc Random Field worlds when the MRF comes from a BN")
affAGC({})
print("C has no impact on A and G")
affAGC({'C':1})
print("But if B is observed")
affAGC({'B':1})
print("C has an impact on A and G")
affAGC({'B':1,'C':0})
Inference for both the corresponding models in BayesNet and Markoc Random Field worlds when the MRF comes from a BN
C has no impact on A and G
But if B is observed
C has an impact on A and G
In [17]:
mn.generateFactors()
print("But with more general factors")
affAGC({})
print("C has impact on A and G even without knowing B")
affAGC({'C':1})
But with more general factors
C has impact on A and G even without knowing B
Graphical inference in Markov random field
In [18]:
bn=gum.fastBN("A->B<-C->D->E->F<-B<-G;A->H->I;C->J<-K<-L")
mn=gum.MarkovRandomField.fromBN(bn)
gnb.sideBySide(gnb.getJunctionTree(bn),gnb.getJunctionTree(mn),captions=["Junction tree for the BN","Junction tree for the induced MN"])
gnb.sideBySide(gnb.getJunctionTreeMap(bn,size="3!"),gnb.getJunctionTreeMap(mn,size="3!"),captions=["Map of the junction tree for the BN","Map of the junction tree for the induced MN"])
In [19]:
gnb.showInference(bn,evs={"D":1,"H":0})
In [20]:
gum.config.reset()
gnb.showInference(mn,size="8",evs={"D":1,"H":0})
In [21]:
gum.config['factorgraph','edge_length_inference']='1.1'
gnb.showInference(mn,size="11",evs={"D":1,"H":0})
In [22]:
gum.config['notebook','default_markovrandomfield_view']='graph'
gnb.showInference(mn,size="8",evs={"D":1,"H":0})