interactive notebooks

Creative Commons License

aGrUM

interactive online version

pyAgrum can easily interact with other applications. In this notebook, we propose for example some application tracks with notebook ipywidgets to make the exploration of graphical models and their inferences more interactive.

In [1]:
import pyAgrum as gum
import pyAgrum.lib.notebook as gnb

Listeners and progress bars

In [2]:
import glob
import os.path
from tqdm.auto import tqdm

class TqdmProgressBarLoadListener:
    def __init__(self,filename:str):
        self.pbar=tqdm(total=100,
                      desc=filename,
                      bar_format='{desc}: {percentage:3.0f}%|{bar}|')
    def update(self,progress):
        if progress==200:
            self.pbar.close()
        else:
            self.pbar.update()
            self.pbar.display()


bns={}
for ext in ['dsl','bif']:
    for name in glob.glob(f"res/*.{ext}"):
        progbar=TqdmProgressBarLoadListener(name)
        bns[os.path.basename(name)]=gum.loadBN(name,listeners=[lambda progress:progbar.update(progress)])

Which should give you something like

progess bars

Animated graphs

ipywidget can be used with different types of objects. Let’s say that you have a class that show the arcs of a Bayesian network only the mutual information of this arc is above a certain threshold:

In [3]:
import pydot as dot

class InformationViewer:
    def __init__(self,bn:gum.BayesNet):
        self.bn=bn

        ie=gum.LazyPropagation(bn)
        self._min=float("inf")
        self._max=float("-inf")
        self._arcs={}
        for x,y in bn.arcs():
            nameX=bn.variable(x).name()
            nameY=bn.variable(y).name()
            ie.addJointTarget({nameX,nameY})
            info=gum.InformationTheory(ie,[nameX],[nameY])
            m=info.mutualInformationXY()
            if self._min>m: self._min=m
            if self._max<m: self._max=m
            self._arcs[x,y]=m

    def min(self):
        return self._min

    def max(self):
        return self._max

    def showBN(self,minVal:float=0):
        graph=dot.Dot(graph_type="digraph",bgcolor="transparent")
        bgcol = gum.config["notebook", "default_node_bgcolor"]
        fgcol = gum.config["notebook", "default_node_fgcolor"]
        for n in self.bn.names():
            graph.add_node(dot.Node('"' + n + '"', style="filled",
                                    fillcolor=bgcol,
                                    fontcolor=fgcol))
        for x,y in self.bn.arcs():
            graph.add_edge(dot.Edge('"' + self.bn.variable(x).name() + '"',
                                    '"' + self.bn.variable(y).name() + '"',
                                    style="invis" if self._arcs[x,y]<minVal else ""))


        size = gum.config["notebook", "default_graph_size"]
        graph.set_size(size)
        return graph

view=InformationViewer(bns['alarm.dsl'])
print(f"min={view.min()} ,max={view.max()}")
gnb.sideBySide(view.showBN(0.3),view.showBN(0.5),
              captions=["BN filtered by $MI>0.3$","BN filtered by $MI>0.5$"])
min=7.940532588368974e-06 ,max=0.8850119269966232
G LVFAILURE LVFAILURE STROKEVOLUME STROKEVOLUME HISTORY HISTORY LVEDVOLUME LVEDVOLUME VENTALV VENTALV PVSAT PVSAT VENTALV->PVSAT ARTCO2 ARTCO2 VENTALV->ARTCO2 MINVOLSET MINVOLSET VENTMACH VENTMACH MINVOLSET->VENTMACH INTUBATION INTUBATION VENTLUNG VENTLUNG MINVOL MINVOL SHUNT SHUNT PRESS PRESS ANAPHYLAXIS ANAPHYLAXIS TPR TPR CO CO STROKEVOLUME->CO VENTLUNG->VENTALV EXPCO2 EXPCO2 VENTLUNG->EXPCO2 BP BP CVP CVP HREKG HREKG HRBP HRBP ERRLOWOUTPUT ERRLOWOUTPUT ERRCAUTER ERRCAUTER HRSAT HRSAT ERRCAUTER->HRSAT VENTTUBE VENTTUBE INSUFFANESTH INSUFFANESTH CATECHOL CATECHOL VENTMACH->VENTTUBE SAO2 SAO2 HYPOVOLEMIA HYPOVOLEMIA HYPOVOLEMIA->STROKEVOLUME HYPOVOLEMIA->LVEDVOLUME LVEDVOLUME->CVP PCWP PCWP LVEDVOLUME->PCWP PULMEMBOLUS PULMEMBOLUS PAP PAP FIO2 FIO2 HR HR HR->HRBP HR->HRSAT KINKEDTUBE KINKEDTUBE CO->BP DISCONNECT DISCONNECT
BN filtered by $MI>0.3$
G LVFAILURE LVFAILURE STROKEVOLUME STROKEVOLUME HISTORY HISTORY LVEDVOLUME LVEDVOLUME VENTALV VENTALV PVSAT PVSAT ARTCO2 ARTCO2 MINVOLSET MINVOLSET VENTMACH VENTMACH INTUBATION INTUBATION VENTLUNG VENTLUNG MINVOL MINVOL SHUNT SHUNT PRESS PRESS ANAPHYLAXIS ANAPHYLAXIS TPR TPR CO CO STROKEVOLUME->CO VENTLUNG->VENTALV EXPCO2 EXPCO2 VENTLUNG->EXPCO2 BP BP CVP CVP HREKG HREKG HRBP HRBP ERRLOWOUTPUT ERRLOWOUTPUT ERRCAUTER ERRCAUTER HRSAT HRSAT VENTTUBE VENTTUBE INSUFFANESTH INSUFFANESTH CATECHOL CATECHOL VENTMACH->VENTTUBE SAO2 SAO2 HYPOVOLEMIA HYPOVOLEMIA LVEDVOLUME->CVP PCWP PCWP LVEDVOLUME->PCWP PULMEMBOLUS PULMEMBOLUS PAP PAP FIO2 FIO2 HR HR KINKEDTUBE KINKEDTUBE DISCONNECT DISCONNECT
BN filtered by $MI>0.5$

Now we can use this class for animation :

In [4]:
import ipywidgets as widgets
def interactive_view(threshold:float):
    return view.showBN(threshold)
widgets.interact(interactive_view,threshold=(view.min(),
                                             view.max(),
                                             (view.max()-view.min())/100.0));

Which should give you something like

informationVisualisation

Vizualizing evidence impact

In [5]:
from ipywidgets import interact, fixed

bn = bns['asia.bif']

asia = list(bn["visit_to_Asia"].labels())
smoking = list(bn["smoking"].labels())
XraY = list(bn["positive_XraY"].labels())
cig_ped_day = gum.RangeVariable("cigarettes_per_day","cigarettes_per_day in [0, 10]?",0,10)
bn.add(cig_ped_day)

@interact(bn=fixed(bn), visit_to_Asia=asia, smoking=smoking, positive_XraY=XraY, smoked_cigarettes=(cig_ped_day.minVal(), cig_ped_day.maxVal(), 1))
def evidence_impact(bn, visit_to_Asia, smoking, positive_XraY, smoked_cigarettes):
    evs = {"visit_to_Asia":visit_to_Asia, "smoking":smoking, "positive_XraY":positive_XraY, "cigarettes_per_day":smoked_cigarettes}
    gnb.showInference(bn, evs=evs)