Causal Model¶
-
class
pyAgrum.causal.
CausalModel
(bn: pyAgrum.BayesNet, latentVarsDescriptor: Optional[List[Tuple[str, Tuple[str, str]]]] = None, keepArcs: bool = False)¶ From an observational BNs and the description of latent variables, this class represent a complet causal model obtained by adding the latent variables specified in
latentVarsDescriptor
to the Bayesian networkbn
.Parameters: - bn – a observational bayesian network
- latentVarsDescriptor – list of couples (<latent variable name>, <list of affected variables’ ids>).
- keepArcs – By default, the arcs between variables affected by a common latent variable will be removed but
this can be avoided by setting
keepArcs
toTrue
-
causalBN
() → pyAgrum.BayesNet¶ Returns: the causal Bayesian network Warning: do not infer any computations in this model. It is strictly a structural model
-
children
(x: Union[int, str]) → Set[int]¶ Parameters: x – the node Returns:
-
idFromName
(name: str) → int¶ Parameters: name – the name of the variable Returns: the id of the variable
-
latentVariablesIds
() → Set[int]¶ Returns: the set of ids of latent variables in the causal model
-
names
() → Dict[int, str]¶ Returns: the map NodeId,Name
-
observationalBN
() → pyAgrum.BayesNet¶ Returns: the observational Bayesian network
-
parents
(x: Union[int, str]) → Set[int]¶ From a NodeId, returns its parent (as a set of NodeId)
Parameters: x – the node Returns: